View More View Less
  • 1 Rudjer Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia
  • 2 University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia
  • 3 Virkom d.o.o, Public Water Supply and Wastewater Services, Kralja Petra Kresimira IV 30, 33 000 Virovitica, Croatia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Listeria monocytogenes is a bacterium widespread in the environment, which has a capacity to survive and grow under various conditions. The bacterial growth results from interactions when subjected to various temperatures, pH levels, and NaCl concentrations were examined by measurements and predictive modelling. Good correlation across the range of growth conditions was shown among observed and predicted growth values, having similar trends and minimal deflections for pH levels 5.0 and 6.0. The growth condition in the 8% NaCl concentration (pH 7.0, temperature 4 °C) resulted with a growth curve of 1 log interval greater than the fitted curve for all the measurements. In all of the cases, there were consistent increases in the rates and decreases in the lag time when the growth temperature increased. Higher incubation temperatures provided higher growth rates as 30 °C and 35 °C yielded double increase of the fitted rate. Fitted and measured growth rates for salinity conditions were significantly different (P<0.05). Comparison of doubling times showed good compatibility, particularly at lower temperatures. Critical use of a model is suggested, although it may enable microbiologists to limit the need of challenge tests and to make rapid and realistic prediction of the growth of L. monocytogenes under conditions relevant to a range of aquatic and other products examined.

  • AOAC (1990): Official Methods of Analysis of AOAC International, 15 th ed., Vol. 2, Association of Official Analytical Chemist Inc., 842, USA. Potentiometric method no. 943.02

    • Search Google Scholar
    • Export Citation
  • AUGUSTIN, J.C. & CARLIER, V. (2000): Mathematical modelling of the growth rate and lag time for Listeria monocytogenes. Int. J. Food Microbiol., 56, 2951.

    • Search Google Scholar
    • Export Citation
  • BARANYI, J., ROBERTS, T.A. & MCCLURE, P. (1993): A non-autonomous differential equation to model bacterial growth. Food Microbiol., 10, 4359.

    • Search Google Scholar
    • Export Citation
  • BARANYI, J. & ROBERTS, T.A. (1994): A dynamic approach to predict bacterial growth in food. Int. J. Food Microbiol., 23, 277294.

  • BARANYI, J., ROSS, T., MCMEEKIN, T.A. & ROBERTS, T.A. (1996): Effects of parameterization on the performance of empirical models used in “predictive microbiology”. Food Microbiol., 13, 8391.

    • Search Google Scholar
    • Export Citation
  • BEGOT, C., LEBERT, I. & LEBERT, A. (1997): Variability of the response of 66 Listeria monocytogenes and Listeria innocua strains to different growth conditions. Food Microbiol., 14, 403412.

    • Search Google Scholar
    • Export Citation
  • BUDZINSKA, K., WRONSKI, G. & SZEJNIUK, B. (2012): Survival time of bacteria Listeria monocytogenes in water environment and sewage. Polish J. Environ. Studies; 21(1), 3137.

    • Search Google Scholar
    • Export Citation
  • DUNGAN, R.S., KLEIN, M. & LEYTEM, A.B. (2012): Quantification of bacterial indicators and zoonotic pathogens in dairy wastewater ponds. Appl. Environ. Microbiol., 78(22), 80898095.

    • Search Google Scholar
    • Export Citation
  • FARBER, J.M., SANDERS, G.W. & JOHNSTON, M.A. (1989): A survey of various foods for the presence of Listeria species. J. Food Protect., 52, 456458.

    • Search Google Scholar
    • Export Citation
  • GEORGE, S.M., LUND, B.M. & BROCKLEHURST, T.F. (1988): The effect of pH and temperature on initiation of growth of Listeria monocytogenes. Lett. Appl. Microbiol., 6, 153156.

    • Search Google Scholar
    • Export Citation
  • GIFFEL, M.C. & ZWIETERING, M.H. (1999): Validation of predictive models describing the growth of Listeria monocytogenes. Int. J. Food Microbiol., 46, 135149.

    • Search Google Scholar
    • Export Citation
  • ISO (1991): General guidance for the enumeration of micro-organism — Colony count technique at 30 °C, Method no. 4833, International Organization for Standardization, 2nd ed., Geneva, Switzerland.

    • Export Citation
  • MCCLURE, P.J., BEAUMONT, A.L., SUTHERLAND, J.P. & ROBERTS, T.A. (1997): Predictive modelling of growth of Listeria monocytogenes. The effects on growth of NaCl, pH, storage temperature and NaNO2. Int. J. FoodMicrobiol., 34, 221232.

    • Search Google Scholar
    • Export Citation
  • MCLAUCHLIN, J., MITCHELL, R.T., SMERDON, W.T. & JEWELL, K. (2004): Listeria monocytogenes and listeriosis: a review of hazard characterization for use in microbiological risk assessment of foods. Int. J. Food Microbiol., 94, 1533.

    • Search Google Scholar
    • Export Citation
  • MEJLHOLM, O. & DALGAARD, P. (2009): Development and validation of an extensive growth and growth boundary model for Listeria monocytogenes in lightly preserved and ready-to-eat shrimp. J. Food Protect., 10, 20282225.

    • Search Google Scholar
    • Export Citation
  • MURRAY, E.G.D., WEBB, R.A. & SWANN, M.B.R. (1926): A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). J. Pathol.Bacteriol., 29, 407439.

    • Search Google Scholar
    • Export Citation
  • PARK, S.Y., CHOI, J.W., YEON, J., LEE, M.J., CHUNG, D.H., KIM, M.G., LEE, K.H., KIM, K.S., LEE, D.H., BAHK, G.J., BAE, D.H., KIM, K.Y., KIM, C.H. & HA, S.D. (2005): Predictive modelling for the growth of Listeriamonocytogenes as a function of temperature, NaCl, and pH. Int. J. Food Microbiol., 15, 13231329.

    • Search Google Scholar
    • Export Citation
  • PETRAN, R.L. & ZOTTOLA, E.A. (1989): A study of factors affecting growth and recovery of Listeria monocytogenes Scott A. J. Food Sci., 54, 458460.

    • Search Google Scholar
    • Export Citation
  • POUILLOT, R. & LUBRAN, M.B. (2011): Predictive microbiology vs. modelling microbial growth within Listeria monocytogenes risk assessment: What parameters matter and why. Food Microbiol., 28, 720726.

    • Search Google Scholar
    • Export Citation
  • RICHARDS, F.J. (1959): A flexible growth function for empirical use. J. Exp. Bot., 10, 290300.

  • ROSS, T. & MCMEEKIN, T.A. (1994): Predictive microbiology. Int. J. Food Microbiol., 23, 241264.

  • ROSS, T., DALGAARD, P. & TIENUNGOON, S. (2000): Predictive modelling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol., 62, 231245.

    • Search Google Scholar
    • Export Citation
  • SAUDERS, B.D., OVERDEVEST, J., FORTES, E., WINDHAM, K., SCHUKKEN, Y., LEMBO, A. & WIEDMANN, M. (2012): Diversity of Listeria species in urban and natural environments. Appl. Environ. Microbiol., 78, 44204433.

    • Search Google Scholar
    • Export Citation
  • SHIMONI, E. & LABUZA, T.P. (2000): Modelling pathogen growth in meat products: future challenges. Trends Food Sci. Technol., 11, 394402.

    • Search Google Scholar
    • Export Citation
  • SKOVGAARD, N. & MORGEN, C.A. (1988): Detection of Listeria spp. in faeces from animals, in feeds, and in raw foods of animal origin. Int. J. Food Microbiol., 6, 229242.

    • Search Google Scholar
    • Export Citation
  • SZIGETI, E. & FARKAS, J. (2000): Use of conductometric technique for data capture in predictive microbiology. Acta Alimentaria, 29, 307314.

    • Search Google Scholar
    • Export Citation
  • VORSTER, S.M., GREEBE, R.P. & NORTJE, G.L. (1993): The incidence of Listeria in processed meats in South Africa. J. Food Protect., 56, 169172.

    • Search Google Scholar
    • Export Citation
  • WANG, C. & MURIANA, P.M. (1994): Incidence of Listeria monocytogenes in packages of retail franks. J. Food Protect., 57, 382386.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 4 3
Jul 2020 5 0 0
Aug 2020 4 0 0
Sep 2020 0 0 0
Oct 2020 6 1 2
Nov 2020 5 8 1
Dec 2020 0 0 0