Environmental factors, including temperature and nutrient composition, have considerable impact on the growth dynamic of each microbial species; moreover it is strongly dependent on the selected strain. Therefore, the aim of this study was to describe and analyse the growth dynamics of the strain Lactobacillus acidophilus NCFM (Howaru) by predictive microbiology tools. The intensity of Lb. acidophilus NCFM growth in MRS broth and in milk was significantly affected by the incubation temperature described by the Gibson’s model, from which the optimal temperature for the Lb. acidophilus growth of 40.5 °C in MRS broth and 40.1 °C in milk was calculated. These cardinal temperatures were verified with the CTMI model providing also other cardinal (minimal Tmin, maximal Tmax, and optimal Topt) values for Lb. acidophilus NCFM growth Topt=40.2 °C, Tmin=15.4 °C, Tmax=46.0 °C and Topt=40.3 °C, Tmin=14.3 °C, Tmax=46.6 °C in MRS broth and in milk, respectively.
ALTERMANN, E., RUSSELL, W.M., AZCARATE-PERIL, M.A., BARRANGOU, R., BUCK, B.L., MCAULIFFE, O., SOUTHER, N., DOBSON, A., DUONG, T., CALLANAN, M., LICK, S., HAMRICK, A., CANO, R. & KLAENHAMMER, T.R. (2005): Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. PNAS, 102, 3906–3912.
AVONTS, L., VAN UYTVEN, E. & DE VUYST, L. (2004): Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int. Dairy J., 14, 947–955.
BARANYI, J., PIN, C. & ROSS, T. (1999): Validating and comparing predictive models. Int. J. Food Microbiol., 48, 159–166.
BARANYI, J. & ROBERTS, T.A. (1994): A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol., 23, 277–294.
DANISCO (2015): Lactobacillus acidophilus NCFM: strain information. Available at http://http://www.danisco.com/fileadmin/user_upload/danisco/documents/products/StrainInfo__NCFM_Aug_2013.pdf (last accessed 8 April 2015).
DAUGHTRY, B.J., DAVEY, K.R. & KING, K.D. (1997): Temperature dependence of growth kinetics of food bacteria. Food Microbiol., 14, 21–30.
EFSA (2011): Scientific opinion on the substantiation of health claims related to various foods/food constituents pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Panel on NDA, EFSA Journal, 9(4), 29.
GIBSON, A., BARANYI, J., PITT, J.I., EYLES, M.J. & ROBERTS, T.A. (1994): Predicting fungal growth – the effect of water activity on Aspergillus flavus and related species. Int. J. Food Microbiol., 23, 419–431.
ISO (2006): Milk products. Enumeration of presumptive Lactobacillus acidophilus on selective medium – Colony count technique at 37 °C. ISO 20128:2006
KASIMOGLU, A., GÖNCÜGLU, M. & AKGÜN, S. (2004): Probiotic white cheese with Lactobacillus acidophilus. Int. Dairy J., 14, 1067–1073.
MANCUŠKOVÁ, T., MEDVEDOVÁ, A. & VALÍK, L. (2013): Mechanizmus úcinku a využitie probiotík v klinickej praxi (The mechanism of action and the use of probiotic in clinical practice). Farm. obzor, 82, 146–150.
MELLEFONT, L.A., MCMEEKIN, T.A. & ROSS, T. (2003): Performance evaluation of a model describing the effects of temperature, water activity, pH and lactic acid concentration on the growth of E. coli. Int. J. Food Microbiol., 82, 43–58.
RATKOWSKY, D.A., LOWRY, R.K., MCMEEKIN, T.A., STOKES, A.N. & CHANDLER, R.E. (1983): Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol., 154, 1222–1226.
ROSS, T. & MCMEEKIN, T.A. (1994): Predictive microbiology, review paper. Int. J. Food Microbiol., 23, 241–264.
ROSSO, L., LOBRY, J. & FLANDERS, J. (1993): Unexpected correlation between temperatures of microbial growth highlighted by new model. J. Theor. Biol., 162, 447–463.
TEGIFFEL, M.C. & ZWIETERING, M.H. (1999): Validation of predictive models describing the growth of L. monocytogenes. Int. J. Food Microbiol., 46, 135–149.
VALÍK, L., MEDVEDOVÁ, A., CIŽNIAR, M. & LIPTÁKOVÁ, D. (2013): Evaluation of temperature effect on L. rhamnosus GG growth rate in milk using secondary models. Chem. Pap., 67, 37–42.
VALÍK, L., MEDVEDOVÁ, A. & LIPTÁKOVÁ, D. (2008): Characterization of the growth of L. rhamnosus GG in milk at suboptimal temperature. J. Nutr. Food Res., 47, 60–67.
ZURERA-COSANO, G., GARCIÁ-GIMENO, R.M., RODRÍGUEZ-PÉREZ, R. & HERVÁS-MARTÍNEZ, C. (2006): Performance of response surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions. Food Control, 17, 429–438.
ZWIETERING, M.H., DE KOOS, J.T., HASENACK, B.E., DE WIT, J.C. & RIET, K. (1991): Modelling of bacterial growth as a function of temperature. Appl. Environ. Microbiol., 57, 1094–1101.