View More View Less
  • 1 Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovak Republic
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Environmental factors, including temperature and nutrient composition, have considerable impact on the growth dynamic of each microbial species; moreover it is strongly dependent on the selected strain. Therefore, the aim of this study was to describe and analyse the growth dynamics of the strain Lactobacillus acidophilus NCFM (Howaru) by predictive microbiology tools. The intensity of Lb. acidophilus NCFM growth in MRS broth and in milk was significantly affected by the incubation temperature described by the Gibson’s model, from which the optimal temperature for the Lb. acidophilus growth of 40.5 °C in MRS broth and 40.1 °C in milk was calculated. These cardinal temperatures were verified with the CTMI model providing also other cardinal (minimal Tmin, maximal Tmax, and optimal Topt) values for Lb. acidophilus NCFM growth Topt=40.2 °C, Tmin=15.4 °C, Tmax=46.0 °C and Topt=40.3 °C, Tmin=14.3 °C, Tmax=46.6 °C in MRS broth and in milk, respectively.

  • ALTERMANN, E., RUSSELL, W.M., AZCARATE-PERIL, M.A., BARRANGOU, R., BUCK, B.L., MCAULIFFE, O., SOUTHER, N., DOBSON, A., DUONG, T., CALLANAN, M., LICK, S., HAMRICK, A., CANO, R. & KLAENHAMMER, T.R. (2005): Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. PNAS, 102, 39063912.

    • Search Google Scholar
    • Export Citation
  • AVONTS, L., VAN UYTVEN, E. & DE VUYST, L. (2004): Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int. Dairy J., 14, 947955.

    • Search Google Scholar
    • Export Citation
  • BARANYI, J., PIN, C. & ROSS, T. (1999): Validating and comparing predictive models. Int. J. Food Microbiol., 48, 159166.

  • BARANYI, J. & ROBERTS, T.A. (1994): A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol., 23, 277294.

  • DANISCO (2015): Lactobacillus acidophilus NCFM: strain information. Available at http://http://www.danisco.com/fileadmin/user_upload/danisco/documents/products/StrainInfo__NCFM_Aug_2013.pdf (last accessed 8 April 2015).

  • DAUGHTRY, B.J., DAVEY, K.R. & KING, K.D. (1997): Temperature dependence of growth kinetics of food bacteria. Food Microbiol., 14, 2130.

    • Search Google Scholar
    • Export Citation
  • EFSA (2011): Scientific opinion on the substantiation of health claims related to various foods/food constituents pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Panel on NDA, EFSA Journal, 9(4), 29.

    • Search Google Scholar
    • Export Citation
  • GIBSON, A., BARANYI, J., PITT, J.I., EYLES, M.J. & ROBERTS, T.A. (1994): Predicting fungal growth – the effect of water activity on Aspergillus flavus and related species. Int. J. Food Microbiol., 23, 419431.

    • Search Google Scholar
    • Export Citation
  • ISO (2006): Milk products. Enumeration of presumptive Lactobacillus acidophilus on selective medium – Colony count technique at 37 °C. ISO 20128:2006

    • Search Google Scholar
    • Export Citation
  • KASIMOGLU, A., GÖNCÜGLU, M. & AKGÜN, S. (2004): Probiotic white cheese with Lactobacillus acidophilus. Int. Dairy J., 14, 10671073.

    • Search Google Scholar
    • Export Citation
  • MANCUŠKOVÁ, T., MEDVEDOVÁ, A. & VALÍK, L. (2013): Mechanizmus úcinku a využitie probiotík v klinickej praxi (The mechanism of action and the use of probiotic in clinical practice). Farm. obzor, 82, 146150.

    • Search Google Scholar
    • Export Citation
  • MELLEFONT, L.A., MCMEEKIN, T.A. & ROSS, T. (2003): Performance evaluation of a model describing the effects of temperature, water activity, pH and lactic acid concentration on the growth of E. coli. Int. J. Food Microbiol., 82, 4358.

    • Search Google Scholar
    • Export Citation
  • RATKOWSKY, D.A., LOWRY, R.K., MCMEEKIN, T.A., STOKES, A.N. & CHANDLER, R.E. (1983): Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol., 154, 12221226.

    • Search Google Scholar
    • Export Citation
  • ROSS, T. & MCMEEKIN, T.A. (1994): Predictive microbiology, review paper. Int. J. Food Microbiol., 23, 241264.

  • ROSSO, L., LOBRY, J. & FLANDERS, J. (1993): Unexpected correlation between temperatures of microbial growth highlighted by new model. J. Theor. Biol., 162, 447463.

    • Search Google Scholar
    • Export Citation
  • TEGIFFEL, M.C. & ZWIETERING, M.H. (1999): Validation of predictive models describing the growth of L. monocytogenes. Int. J. Food Microbiol., 46, 135149.

    • Search Google Scholar
    • Export Citation
  • VALÍK, L., MEDVEDOVÁ, A., CIŽNIAR, M. & LIPTÁKOVÁ, D. (2013): Evaluation of temperature effect on L. rhamnosus GG growth rate in milk using secondary models. Chem. Pap., 67, 3742.

    • Search Google Scholar
    • Export Citation
  • VALÍK, L., MEDVEDOVÁ, A. & LIPTÁKOVÁ, D. (2008): Characterization of the growth of L. rhamnosus GG in milk at suboptimal temperature. J. Nutr. Food Res., 47, 6067.

    • Search Google Scholar
    • Export Citation
  • ZURERA-COSANO, G., GARCIÁ-GIMENO, R.M., RODRÍGUEZ-PÉREZ, R. & HERVÁS-MARTÍNEZ, C. (2006): Performance of response surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions. Food Control, 17, 429438.

    • Search Google Scholar
    • Export Citation
  • ZWIETERING, M.H., DE KOOS, J.T., HASENACK, B.E., DE WIT, J.C. & RIET, K. (1991): Modelling of bacterial growth as a function of temperature. Appl. Environ. Microbiol., 57, 10941101.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 10 9
Jul 2020 4 0 0
Aug 2020 13 0 0
Sep 2020 4 0 0
Oct 2020 3 0 0
Nov 2020 9 10 2
Dec 2020 0 0 0