Present study demonstrated the isolation of most promising β-galactosidase producing bacterial strain SB from soil. Morphological, biochemical, and 16s rRNA sequence analysis identified the bacterial strain as Arthrobacter oxydans. Several chemicals, including SDS, Triton X-100, Tween 20, isoamyl alcohol, and toluene-acetone mixture, were applied for extraction of intracellular β-galactosidase from the bacterial strain Arthrobacter oxydans. Among these, Tween 20 was recorded to be most effective. Role of pH, temperature, and shaker speed on production of β-galactosidase was evaluated using Box-Behnken design of response surface methodology. According to Box-Behnken analysis, optimum production of β-galactosidase (21.38 U (mg–1 protein)) is predicted at pH 6.76, temperature 36.1 °C, and shaker speed 121.37 r.p.m. The parameters are validated with the nearest value.
BURY, D., JELEN, P. & KALAB, M. (2001): Disruption of Lactobacillus delbrueckii ssp. bulgaricus 11842 cells for lactose hydrolysis in dairy products: a comparison of sonication, high-pressure homogenization and bead milling. Innov. Food Sci. Emerg., 2, 23–29.
CAO, G., REN, N., WANG, A., LEE, D.J., GUO, W., LIU, B., FENG, Y. & ZHAO, Q. (2009): Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energ., 34, 7182–7188.
CHOONIA, H.S. & LELE, S.S. (2013): Release of β-galactosidase by permeabilization of indigenously isolated Lactobacillus acidophilus using lysozyme. Chem. Biochem. Eng. Q., 27, 449–456.
DHAKED, R.M., ALAM, S.I. & SINGH, L. (2004): Characterization of β-galactosidase from an Antarctic Bacillus sp. Indian J. Biotechnol., 4, 227–231.
EL-KADER, A.S.S.A., EL-DOSOUKY, M.A., ABOUWARDA, A., ALL, S.M.A. & OSMAN, M.I. (2012): Characterization of partially purified β galactosidase from Bacillus subtilis. J. Appl. Sci. Res., 8, 2379–2385.
FELIU, J.X., CUBARSI, R. & VILLAVERDE, A. (1998): Optimized release of recombinant proteins by ultrasonication of E. coli cells. Biotechnol. Bioeng., 58, 536–540.
GECIOVA, J., BURY, D. & JELEN, P. (2000): Methods for disruption of microbial cells for potential use in the dairy industry – a review. Int. Dairy. J., 12, 541–553.
GEKAS, V. & LOPEZ-LEIVA, M. (1985): Hydrolysis of lactose. Process Biochem., 2, 2–12.
HARTMANN, M. (2005): Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater., 17, 4577–4593.
HEYMAN, M.B. (2006): Lactose intolerance in infants, children, and adolescents. Pediatrics., 118, 1279–1286.
HONDA, H., NAGAOKA, S., KAWAI, Y., KEMPERMAN, R., KOK, J., YAMAZAKI, Y., TATENO, Y., KITAZAWA, H. & SAITO, T. (2012): Purification and characterization of two phospho-β-galactosidases, LacG1 and LacG2, from Lactobacillus gasseri ATCC 33323T. J. Gen. Appl. Microbiol., 58, 11–17.
HSU, C.A., YU, R.C. & CHOU, C.C. (2005): Production of beta-galactosidase by Bifidobacteria as influenced by various culture conditions. Int. J. Food Microbiol., 104, 197–206.
HUSAIN, Q. (2010): β-Galactosidase and their potential application: A review. Crit. Rev. Biotechnol., 30, 41–62.
KUMAR, D.J.M., SUDHA, M., DEVIKA, S., BALAKUMARAN, M.D., RAVI KUMAR, M. & KALAICHELVAN, P.T. (2012): Production and optimization of β-Galactosidase by Bacillus sp. MPTK 121, isolated from dairy plant soil. Ann. Biol. Res., 3, 1712–1718.
LAURO, B.D., STRAZZULLI, A., PERUGINO, G., CARA, F.L., BEDINI, E., CORSARO, M.M., ROSSI, M. & MORACCI, M. (2008): Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: Identification of the active site residues. Biochim. Biophys. Acta, 1784, 292–301.
LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.L. & RANDALL, R.J. (1951): Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275.
MAHONEY, R.R. (1985): Modification of lactose and lactose-containing dairy products with β-galactosidase. -in: FOX, P.F. (Ed.), Developments in dairy chemistry, Elsevier Applied Science Publishers, New York, NY, pp. 69–110.
MAITY, M., SANYAL, S., BHOWAL, J. & BHATTACHARYYA, D.K. (2013): Studies on isolation and characterization of lactase produced from soil bacteria. Res. J. Recent. Sci., 2, 92–94.
NUMANOGLU, Y. & SUNGUR, S. (2004): β-galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using cellulose-gelatin carrier system. Process. Biochem., 39, 705–711.
OSIRIPHUN, S. & JATURAPIREE, P. (2009): Isolation and characterization of β-galactosidase from the thermophile B1.2. Asian J. Food Ag-Ind., 2, 135–143.
PANESAR, P.S., KUMARI, S. & PANESAR, R. (2010): Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res., 2010, 1–16.
PANESAR, P.S., PANESAR, R., SINGH, R.S., KENNEDY, J.F. & KUMAR, H. (2006): Microbial production, immobilization and applications of β-D-galactosidase. J. Chem. Technol. Biot., 81, 530–543.
PANESAR, R., PANESAR, P.S., SINGH, R.S., KENNEDY, J.F. & BERA, M.B. (2007): Production of lactose hydrolyzed milk using ethanol permeabilized yeast cells. Food Chem., 101, 786–790.
PARK, P.K., KIM, E.Y. & CHU, K.H. (2007): Chemical disruption of yeast cells for the isolation of carotenoid pigments. Sep. Purif. Technol., 53, 148–152.
PIERRE, A.C. (2004): The sol-gel encapsulation of enzymes. Biocatal. Biotransfor., 22, 145–170.
PRASAD, L.N., GHOSH, B.C., SHERKAT, F. & SHAH, N.P. (2013): Extraction and characterization of β-galactosidase produced by Bifidobacterium animalis spp. lactis Bb12 and Lactobacillus delbrueckii spp. bulgaricus ATCC 11842 grown in whey. Int. Food Res. J., 20, 487–494.
PRINCELY, S.S., BASHA, N.S., KIRUBAKARAN, J.J. & DHANARAJU, M.D. (2013): Biochemical characterization, partial purification, and production of an intracellular beta-galactosidase from Streptococcus thermophilus grown in whey. Eur. J. Exp. Biol., 3, 242–251.
RAY, A.K., BAIRAGI, A., GHOSH, K.S. & SEN, S.K. (2007): Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyol. Piscat., 37, 47–53.
RAY, A.K., MONDAL, S. & ROY, T. (2012): Optimization of culture conditions for production of protease by two bacterial strains, Bacillus licheniformis BF2 and Bacillus subtilis BH4 isolated from the digestive tract of bata, Labeo bata (Hamilton). Proc. Zool. Soc., 65, 33–39.
SAISHIN, N., UETA, M., WADA, A. & YAMAMOTO, I. (2010): Properties of β-galactosidase purified from Bifidobacterium longum subsp. longum JCM 7052 grown on gum arabic. J. Biol. Macromol., 10, 23–31.
VOLKOV, I.Y., LUNINA, N.A., BEREZINA, O.V., VELIKODVORSKAYA, G.A. & ZVERLOV, V.V. (2005): Thermoanaerobacter ethanolicus gene cluster containing the a-and β-galactosidase genes melA and lacA and properties of recombinant lacA. Mol. Biol., 39, 799–805.