View More View Less
  • a Visva-Bharati University, Santiniketan, 731235, India
  • b University of Delhi, Delhi, India
  • c Ramakrishna Ashrama Narendrapur, West Bengal, Kolkata, 700103, India
  • d Helix Biogenesis, Noida, Sector 2, UP, India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Present study demonstrated the isolation of most promising β-galactosidase producing bacterial strain SB from soil. Morphological, biochemical, and 16s rRNA sequence analysis identified the bacterial strain as Arthrobacter oxydans. Several chemicals, including SDS, Triton X-100, Tween 20, isoamyl alcohol, and toluene-acetone mixture, were applied for extraction of intracellular β-galactosidase from the bacterial strain Arthrobacter oxydans. Among these, Tween 20 was recorded to be most effective. Role of pH, temperature, and shaker speed on production of β-galactosidase was evaluated using Box-Behnken design of response surface methodology. According to Box-Behnken analysis, optimum production of β-galactosidase (21.38 U (mg–1 protein)) is predicted at pH 6.76, temperature 36.1 °C, and shaker speed 121.37 r.p.m. The parameters are validated with the nearest value.

  • BURY, D., JELEN, P. & KALAB, M. (2001): Disruption of Lactobacillus delbrueckii ssp. bulgaricus 11842 cells for lactose hydrolysis in dairy products: a comparison of sonication, high-pressure homogenization and bead milling. Innov. Food Sci. Emerg., 2, 2329.

    • Search Google Scholar
    • Export Citation
  • CAO, G., REN, N., WANG, A., LEE, D.J., GUO, W., LIU, B., FENG, Y. & ZHAO, Q. (2009): Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energ., 34, 71827188.

    • Search Google Scholar
    • Export Citation
  • CHOONIA, H.S. & LELE, S.S. (2013): Release of β-galactosidase by permeabilization of indigenously isolated Lactobacillus acidophilus using lysozyme. Chem. Biochem. Eng. Q., 27, 449456.

    • Search Google Scholar
    • Export Citation
  • DHAKED, R.M., ALAM, S.I. & SINGH, L. (2004): Characterization of β-galactosidase from an Antarctic Bacillus sp. Indian J. Biotechnol., 4, 227231.

    • Search Google Scholar
    • Export Citation
  • EL-KADER, A.S.S.A., EL-DOSOUKY, M.A., ABOUWARDA, A., ALL, S.M.A. & OSMAN, M.I. (2012): Characterization of partially purified β galactosidase from Bacillus subtilis. J. Appl. Sci. Res., 8, 23792385.

    • Search Google Scholar
    • Export Citation
  • FELIU, J.X., CUBARSI, R. & VILLAVERDE, A. (1998): Optimized release of recombinant proteins by ultrasonication of E. coli cells. Biotechnol. Bioeng., 58, 536540.

    • Search Google Scholar
    • Export Citation
  • GECIOVA, J., BURY, D. & JELEN, P. (2000): Methods for disruption of microbial cells for potential use in the dairy industry – a review. Int. Dairy. J., 12, 541553.

    • Search Google Scholar
    • Export Citation
  • GEKAS, V. & LOPEZ-LEIVA, M. (1985): Hydrolysis of lactose. Process Biochem., 2, 212.

  • HARTMANN, M. (2005): Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater., 17, 45774593.

  • HEYMAN, M.B. (2006): Lactose intolerance in infants, children, and adolescents. Pediatrics., 118, 12791286.

  • HONDA, H., NAGAOKA, S., KAWAI, Y., KEMPERMAN, R., KOK, J., YAMAZAKI, Y., TATENO, Y., KITAZAWA, H. & SAITO, T. (2012): Purification and characterization of two phospho-β-galactosidases, LacG1 and LacG2, from Lactobacillus gasseri ATCC 33323T. J. Gen. Appl. Microbiol., 58, 1117.

    • Search Google Scholar
    • Export Citation
  • HSU, C.A., YU, R.C. & CHOU, C.C. (2005): Production of beta-galactosidase by Bifidobacteria as influenced by various culture conditions. Int. J. Food Microbiol., 104, 197206.

    • Search Google Scholar
    • Export Citation
  • HUSAIN, Q. (2010): β-Galactosidase and their potential application: A review. Crit. Rev. Biotechnol., 30, 4162.

  • KUMAR, D.J.M., SUDHA, M., DEVIKA, S., BALAKUMARAN, M.D., RAVI KUMAR, M. & KALAICHELVAN, P.T. (2012): Production and optimization of β-Galactosidase by Bacillus sp. MPTK 121, isolated from dairy plant soil. Ann. Biol. Res., 3, 17121718.

    • Search Google Scholar
    • Export Citation
  • LAURO, B.D., STRAZZULLI, A., PERUGINO, G., CARA, F.L., BEDINI, E., CORSARO, M.M., ROSSI, M. & MORACCI, M. (2008): Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: Identification of the active site residues. Biochim. Biophys. Acta, 1784, 292301.

    • Search Google Scholar
    • Export Citation
  • LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.L. & RANDALL, R.J. (1951): Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265275.

    • Search Google Scholar
    • Export Citation
  • MAHONEY, R.R. (1985): Modification of lactose and lactose-containing dairy products with β-galactosidase. -in: FOX, P.F. (Ed.), Developments in dairy chemistry, Elsevier Applied Science Publishers, New York, NY, pp. 69110.

    • Search Google Scholar
    • Export Citation
  • MAITY, M., SANYAL, S., BHOWAL, J. & BHATTACHARYYA, D.K. (2013): Studies on isolation and characterization of lactase produced from soil bacteria. Res. J. Recent. Sci., 2, 9294.

    • Search Google Scholar
    • Export Citation
  • NUMANOGLU, Y. & SUNGUR, S. (2004): β-galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using cellulose-gelatin carrier system. Process. Biochem., 39, 705711.

    • Search Google Scholar
    • Export Citation
  • OSIRIPHUN, S. & JATURAPIREE, P. (2009): Isolation and characterization of β-galactosidase from the thermophile B1.2. Asian J. Food Ag-Ind., 2, 135143.

    • Search Google Scholar
    • Export Citation
  • PANESAR, P.S., KUMARI, S. & PANESAR, R. (2010): Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res., 2010, 116.

    • Search Google Scholar
    • Export Citation
  • PANESAR, P.S., PANESAR, R., SINGH, R.S., KENNEDY, J.F. & KUMAR, H. (2006): Microbial production, immobilization and applications of β-D-galactosidase. J. Chem. Technol. Biot., 81, 530543.

    • Search Google Scholar
    • Export Citation
  • PANESAR, R., PANESAR, P.S., SINGH, R.S., KENNEDY, J.F. & BERA, M.B. (2007): Production of lactose hydrolyzed milk using ethanol permeabilized yeast cells. Food Chem., 101, 786790.

    • Search Google Scholar
    • Export Citation
  • PARK, P.K., KIM, E.Y. & CHU, K.H. (2007): Chemical disruption of yeast cells for the isolation of carotenoid pigments. Sep. Purif. Technol., 53, 148152.

    • Search Google Scholar
    • Export Citation
  • PIERRE, A.C. (2004): The sol-gel encapsulation of enzymes. Biocatal. Biotransfor., 22, 145170.

  • PRASAD, L.N., GHOSH, B.C., SHERKAT, F. & SHAH, N.P. (2013): Extraction and characterization of β-galactosidase produced by Bifidobacterium animalis spp. lactis Bb12 and Lactobacillus delbrueckii spp. bulgaricus ATCC 11842 grown in whey. Int. Food Res. J., 20, 487494.

    • Search Google Scholar
    • Export Citation
  • PRINCELY, S.S., BASHA, N.S., KIRUBAKARAN, J.J. & DHANARAJU, M.D. (2013): Biochemical characterization, partial purification, and production of an intracellular beta-galactosidase from Streptococcus thermophilus grown in whey. Eur. J. Exp. Biol., 3, 242251.

    • Search Google Scholar
    • Export Citation
  • RAY, A.K., BAIRAGI, A., GHOSH, K.S. & SEN, S.K. (2007): Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyol. Piscat., 37, 4753.

    • Search Google Scholar
    • Export Citation
  • RAY, A.K., MONDAL, S. & ROY, T. (2012): Optimization of culture conditions for production of protease by two bacterial strains, Bacillus licheniformis BF2 and Bacillus subtilis BH4 isolated from the digestive tract of bata, Labeo bata (Hamilton). Proc. Zool. Soc., 65, 3339.

    • Search Google Scholar
    • Export Citation
  • SAISHIN, N., UETA, M., WADA, A. & YAMAMOTO, I. (2010): Properties of β-galactosidase purified from Bifidobacterium longum subsp. longum JCM 7052 grown on gum arabic. J. Biol. Macromol., 10, 2331.

    • Search Google Scholar
    • Export Citation
  • VOLKOV, I.Y., LUNINA, N.A., BEREZINA, O.V., VELIKODVORSKAYA, G.A. & ZVERLOV, V.V. (2005): Thermoanaerobacter ethanolicus gene cluster containing the a-and β-galactosidase genes melA and lacA and properties of recombinant lacA. Mol. Biol., 39, 799805.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 1 0
Jul 2020 3 0 0
Aug 2020 1 0 0
Sep 2020 1 0 0
Oct 2020 1 0 0
Nov 2020 8 1 0
Dec 2020 0 0 0