View More View Less
  • 1 University of West Hungary, H-9200 Mosonmagyaróvár, Vár u. 2, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

The aim of our experiments was to demonstrate the non-thermal effect of microwave treatment on Saccharomyces cerevisiae fermentation activity. A method was developed for studying the effects of various treatments in the course of must fermentation. The raw material (must) was treated in different ways: (i) heat transfer; (ii) microwave treatment; (iii) inoculation with yeast, and (iv) their combinations. The results of the treatments were compared with respect to alcohol concentration, sugar content, and acidity. The results proved that sugar content of the treated samples rapidly decreased compared to the control sample, and fermentation time was 40% shorter in the fastest case. These results can be explained by the yeast inoculation and microwave treatment. Due to non-thermal effects, fermentation capacity increased by about 30%, while the energy consumption decreased.

  • BeszÉDes, S. (2014): Szennyvíziszapok biológiai lebonthatóságának növelése mikrohullámú előkezeléssel. (Improvement of biodegradability of sludge by microwave pre-treatment). PhD thesis, University of Szeged, 129 pages.

    • Search Google Scholar
    • Export Citation
  • BeszÉDes, S., LÁSzlÓ, Zs., HorvÁTh, H-Zs., SzabÓ, G. & HodÚR, C. (2011): Comparison of the effects of microwave irradiation with different intensities on the biodegradability of sludge from the dairy- and meat-industry. Bioresource Technol., 102(2), 814.

    • Search Google Scholar
    • Export Citation
  • Biacs, P., SzabÓ, G., SzendrŐ, P. & VÉHa, A. (2010): Élelmiszer-technológia mérnököknek (Food-Technology for Engineers), SZTE Mérnöki Kar, Szeged, pp. 345385.

    • Search Google Scholar
    • Export Citation
  • Calado, C.R.C., Taipa, M.A., Cabral, J.M.S. & Fonseca, L.P. (2002): Optimisation of culture conditions and characterization of cutinose produced by recombinant Saccharomyces cerevisiae. Enzyme Microb. Tech., 31, 161170.

    • Search Google Scholar
    • Export Citation
  • Dreyfuss, M.S. & Chipley, J.R. (1980): Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Appl. Environ. Microb., 39(1), 13.

    • Search Google Scholar
    • Export Citation
  • Eperjesi, I., KÁLlay, M. & Magyar, I. (1998): Borászat (Winery). Mezőgazda Kiadó, Budapest, 547 pages.

  • Farkas, G., Rezessy-SzabÓ, J.M., ZÁKÁNy, F. & Hoschke, Á. (2005): Interaction of Saccharomyces and non- Saccharomyces yeast strains in an alcoholic fermentation process. Acta Alimentaria, 34, 8190.

    • Search Google Scholar
    • Export Citation
  • GÉCzi, G., Korzenszky, P., HorvÁTh, M. & MolnÁR, E. (2013): Heat treatments versus fermentation. Animal Welfare, Ethology and Housing Systems, 9(3), 448.

    • Search Google Scholar
    • Export Citation
  • Golant, M.B., Kuznetsov, A.P. & Bozhanova, T.P. (1994): The mechanism of synchronizing yeast cell cultures with EHF radiation (in Russian), Biofizika, 39, 490495.

  • Grundler, W., Keilman, F. & Froehlich, H. (1977): Resonance growth rate response of yeast cells irradiated by weak microwaves. Physics Lett. A., 62, 463466.

    • Search Google Scholar
    • Export Citation
  • Grundler, W., Keilman, F., Putterlik, V. & Strube, D. (1982): Resonant-like dependence of yeast growth rate on microwave frequencies. Brit. J. Cancer, 45, 206208.

    • Search Google Scholar
    • Export Citation
  • Grundler, W., Jentzsch, U., Keilman, F. & Putterlik, V. (1988): Resonance cellular effects of low intensity microwave. - in: Frolich, H. (Ed.), Biological coherence and response to external stimuli. Springer-Verlag, Berlin, pp. 6585.

    • Search Google Scholar
    • Export Citation
  • HUNGARIAN STANDARD (1982): Borok szesztartalmának meghatározása Malligand-készülékkel (Determination of alcohol content of wines with Malligand-device). MSZ 9457:1982.

    • Search Google Scholar
    • Export Citation
  • KÁLlay, M. (2010): Borászati kémia. (Oenological chemistry). Mezőgazda Kiadó, Budapest, 206 pages.

  • Korzenszky, P. & MolnÁR, E. (2014): Must tartósításának vizsgálata (Examination of preservation of grape must). Konzervújság, LXII.(1), 2731.

    • Search Google Scholar
    • Export Citation
  • Korzenszky, P. & MolnÁR, E. (2014): Examination of heat treatments at preservation of grape must. Potravinarstvo, 8(1), 33.

  • Kothari, V., Patadia, M. & Trivedi N. (2011): Microwave sterilized media supports better microbial growth than autoclaved media. Res. Biotechnology. 2(5), 63.

    • Search Google Scholar
    • Export Citation
  • Novales, J-F., LÓPez, M-I., SÁNchez, M-T. & Morales, J. (2009): Shortwave-near infrared spectroscopy for determination of reducing sugar content during grape ripening, winemaking, and aging of white and red wines. Food Res. Int., 42, 285291.

    • Search Google Scholar
    • Export Citation
  • OIV (2009): Total acidity, revised by 377/2009, OIV-MA-AS313-01

  • Pickering, G.J., Heatherbell, D.A. & Barnes, M.F. (1998): Optimising glucose conversion in the production of reduced alcohol wine using glucose oxidase. Food Res. Int., 31, 685692.

    • Search Google Scholar
    • Export Citation
  • Pretorius, I.S. (2000): Tailoring wine yeast for the next millennium: Novel approaches to the ancient art of winemaking. Yeast, 16, 675729.

    • Search Google Scholar
    • Export Citation
  • Rai, S., Singh, U.P., Mishra, G.D., Singh, S.P. & Samarketu, S.P. (1994): Effect of water’s microwave power density memory on fungal spore germination. Electro Magnetobiol. 13, 247252.

    • Search Google Scholar
    • Export Citation
  • Rai, S., Singh, U.P., Mishra, G.D., Singh, S.P. & Samarketu, S.P. (1994): Additional evidence of stable EMFinduced changes in water revealed by fungal spore germination. Electro Magnetobiol. 13, 253259.

    • Search Google Scholar
    • Export Citation
  • Sablayrolles, J.M. (2009): Control of alcoholic fermentation in wine making: Current situation and prospect. Food Res. Int., 42, 418424.

    • Search Google Scholar
    • Export Citation
  • Shu-Wei, Z., Qi-Lin, H. & Si-Ming, Z. (2014): Effects of microwave irradiation dose and time on yeast ZSM-001 growth and cell membrane permeability. Food Control, 46, 360367.

    • Search Google Scholar
    • Export Citation
  • ThÉNard, L.J. (1875): Rapport sur un appareil de M. Malligand, pour titrer l’alcool des vins. Compt. rend., 80, 1114.

  • Trivedi, N., Patadia, M. & Kothari, V. (2011): Biological applications of microwaves. Int. J. Life Sci. Tech., 4(6), 37.

  • Wayland, J.R., Brannen, J.P. & Morris, M.E. (1977): On the interdependence of thermal and electromagnetic effects in the response of Bacillus subtilis spores to microwave exposure. Radiat. Res., 71, 251258.

    • Search Google Scholar
    • Export Citation
  • Welt, B., Tong, C., Rossen, J. & Lund, D. (1994): Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores. Appl. Environ. Microb., 60, 482488.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 10 0 0
May 2021 8 0 0
Jun 2021 10 0 0
Jul 2021 11 0 0
Aug 2021 14 0 0
Sep 2021 6 2 0
Oct 2021 0 0 0