View More View Less
  • 1 Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

The utilization of potato waste liquid instead of synthetic substrates for lactic acid production cannot only reduce the production cost but also makes the process environment effective. Unlike many lactic acid bacteria, lactic acid producing Rhizopus strains generates L(+) lactic acid as a sole isomer of lactic acid. Furthermore, some Rhizopus spp. are amylolytic in nature and can produce lactic acid from starchy substrates without prior saccharification. This study aimed at the utilization of potato waste liquid for the production of L(+) lactic acid using amylolytic Rhizopus oryzae MTCC 8784. The effect of media components and process parameters on simultaneous saccharification and fermentation of potato waste liquid by fungal strain has been studied to maximize the production of L(+) lactic acid. The results revealed that highest lactic acid production (15.5 g l–1) was obtained with potato waste liquid containing 30 g l–1 starch supplemented with soya okara hydrolysate (1.5%, v/v), calcium carbonate (1.5%, w/v), and salts. In terms of process parameters, the maximum L(+) lactic acid (18.15 g l–1) production was obtained at pH 6 with temperature 30 °C, agitation of 150 r.p.m., after incubation period of 48 h.

  • Bertola, N., Palladino, L., Bevilacqua, A. & Zaritzky, N. (1999). Optimization of the design parameters in an activated sludge system for the wastewater treatment of a potato processing plant. J. Food Eng., 40, 2733.

    • Search Google Scholar
    • Export Citation
  • Ghaffar, T., Irshada, M., Anwara, Z., Aqilb, T., Zulifqara, Z., Tariqa, A., Kamrana, M., Ehsana, N. & Mehmooda, S. (2014). Recent trends in lactic acid biotechnology: A brief review on production to purification. J. Rad. Res. Appl. Sci. (JRRAS), 7, 222229.

    • Search Google Scholar
    • Export Citation
  • Huang, L.P., Jin, B., Lant, P. & Zhou, J.T. (2005). Simultaneous saccharification and fermentation of potato starch waste water to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochem. Eng. J., 23, 265276.

    • Search Google Scholar
    • Export Citation
  • Jin, B., Huang, L.P. & Lant, P. (2003). Rhizopus arrhizus — a producer for simultaneous saccharification and fermentation of starch waste materials to L(+)-lactic acid. Biotechnol. Lett., 25, 19831987.

    • Search Google Scholar
    • Export Citation
  • Kishore, G., Karthik, A., Gopal, S.V., Kumar, A.R., Bhat, M. & Udupa, N. (2013). Development of RP-HPLC method for simultaneous estimation of lactic acid and glycolic acid. Der Pharma Chemica, 5, 335340.

    • Search Google Scholar
    • Export Citation
  • Kurniawati, T., Indrati, R. & Sarrdjono T. (2014). Isolation of Rhizopus oryzae from rotten fruit and its potency for lactic acid production in glucose medium with and without addition of calcium carbonate. Agritech, 34, 170176.

    • Search Google Scholar
    • Export Citation
  • Li, S., Zhu, D., Li, K., Yang, Y., Lei, Z. & Zhang, Z. (2013). Soybean curd residue: composition, utilization, and related limiting factors. ISRN Ind. Eng., 2013, 18.

    • Search Google Scholar
    • Export Citation
  • Martak, J., Schlosser, S., Sabolova, E., Kristofikova, L. & Rosenberg, M. (2003). Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation. Process Biochem., 38, 15731583.

    • Search Google Scholar
    • Export Citation
  • Nakamura, L.K. (1981). Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int. J. Syst. Bacteriol., 31(1), 5663.

    • Search Google Scholar
    • Export Citation
  • Nattrass, L. & Higson, A. (2011): NNFCC Renewable chemicals fact sheet: Lactic acid, United Kingdom. http://www.nnfcc.co.uk/publications/nnfcc-renewable-chemicals-factsheet-lactic-acid (last accessed 13 November 2015)

    • Search Google Scholar
    • Export Citation
  • Pandey, S.K., Marwaha, R.S., Kumar, D. & Singh, S.V. (2009). Indian potato processing story: industrial limitations, challenges ahead and vision for the future. Potato J., 36, 113.

    • Search Google Scholar
    • Export Citation
  • Park, E.Y., Anh, P.H. & Ohuda, N. (2004). Bioconversion of waste office paper to L(+) lactic acid by the filamentous fungus Rhizopus oryzae. Bioresource Technol., 93, 7783.

    • Search Google Scholar
    • Export Citation
  • Ruengruglikit, C. & Hang, Y.D. (2003). L(+)-Lactic acid production from corncobs by Rhizopus oryzae NRRL-395. LWT — Food Sci. Technol., 36, 573575.

    • Search Google Scholar
    • Export Citation
  • Shi, G., Wang, G., Chen, X. & Li, C. (2013). Optically pure L-lactic acid production directly from leftover bits and pieces of potato starch using an amylolytic pellet-form complex Rhizopus oryzae ASC081. J. Appl. Sci. Eng., 16, 205210.

    • Search Google Scholar
    • Export Citation
  • Tanaka, T., Hoshina, M., Tanabe, S., Sakai, K., Ohtsubo, S. & Taniguchi, M. (2006). Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresource Technol., 97, 211217.

    • Search Google Scholar
    • Export Citation
  • Yuwa-Amornpitak, T. & Chookietwattana T. (2014). L-lactic acid production from cassava st arch by thermotolerant Rhizopus microspores LTH23. J. Biol. Sci., 14, 284291.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z.Y., Jin, B. & Kelly, M.J. (2007). Production of lactic acid from renewable materials by Rhizopus fungi. Biochem. Eng. J., 35, 251263.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 14 5
Jul 2020 5 0 0
Aug 2020 1 0 0
Sep 2020 1 0 0
Oct 2020 0 0 0
Nov 2020 1 0 0
Dec 2020 0 0 0