Authors: Y.A. Begum1 and S.C. Deka1
View More View Less
  • 1 Tezpur University, Assam-784 028, India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Green synthesis of hydroxyapatite (HA) nanoparticles was followed using various concentrations of pectin extracted from the culinary banana bract. The effect of pectin concentrations on purity, crystallinity, particle size, and morphology of synthesized HA nanoparticles were studied. The extracted pectin was characterized by proton-1 nuclear magnetic resonance spectroscopy (1H NMR) and Fourier transform infrared (FT-IR) spectroscopy. FT-IR results revealed that increased concentration (0–0.075 % w/w) of pectin substantially improved the purity level of synthesized HA nanoparticles. In addition, higher concentration of pectin also reduced the crystallinity and size of the synthesized HA nanoparticles, which was confirmed by X-ray diffraction (XRD) and SEM results, respectively. The synthesized HA nanoparticles at increased pectin concentration (HA0.075) evinced high purity, less crystallinity, and discrete uniform shape. Results of TEM images have the credence to reveal the presence of nanosized discrete particles (20–50 nm) with lattice structure of hydroxyapatite.

  • Begum, Y.A. & Deka, S.C. (2017): Stability of spray dried microencapsulated anthocyanins extracted from culinary banana bract. Int. J. Food Prop. (DOI: 10.110.1080/10942912.2016.1277739).

    • Search Google Scholar
    • Export Citation
  • Chatjigakis, A.K., Pappas, C., Proxenia, N., Kalantzi, O., Rodis, P. & Polissiou, M. (1998): FTIR spectroscopic determination of the degree of esterification of cell wall pectins from stored peaches and correlation to textural changes. Carbohyd. Polym., 37, 395408.

    • Search Google Scholar
    • Export Citation
  • Christensen, S.H. (1986): Pectins. -in: Glicksman, M. (Ed.) Food hydrocolloids, Vol. III., CRC Press, Boca Raton, Florida, pp. 206227.

    • Search Google Scholar
    • Export Citation
  • Dhanasekaran, D., Lawanya, S., Saha, S., Thajuddin, N. & Panneerselvam, A. (2011): Production of single cell protein from pine apple waste using yeast. Innov. Rom. Food Biotechnol., 8, 2632.

    • Search Google Scholar
    • Export Citation
  • Dorozhkin, S.V. & Epple, M. (2002): Biological and medical significance of calcium phosphates. Angew. Chem. Int. Edit., 41(17), 31303146.

    • Search Google Scholar
    • Export Citation
  • Gilbert, P.U.P.A., Abrecht, M. & Frazer, B.H. (2005): The organic-mineral interface in biominerals. Rev. Mineral Geochem. (RiMG), 59, 157185.

    • Search Google Scholar
    • Export Citation
  • Gopi, D., Bhalaji, P.R., Prakash, V.C.A., Ramasamy, A.K., Kavitha, L. & Ferreira, J.M.F. (2010): An effective and facile synthesis of hydroxyapatite powders using oxalic acid ethylene glycol mixture. Curr. Appl. Phys. 11, 590593.

    • Search Google Scholar
    • Export Citation
  • Gopi, D., Govindaraju, K.M., Victor, C.A.P., Kavitha, L. & Rajendiran, N. (2008): Spectroscopic investigations of nano hydroxyapatite powders synthesized by conventional and ultrasonic coupled sol-gel routes. Spectrochim. Acta A, 70, 12431245.

    • Search Google Scholar
    • Export Citation
  • Gopi, D., Kanimozhi, K., Bhuvaneshwari, N., Indira, J. & Kavitha, L. (2014): Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization. Spectrochim. Acta A., 118, 589597.

    • Search Google Scholar
    • Export Citation
  • Gopi, D., Kanimozhi, K. & Kavitha, L. (2015): Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities. Spectrochim. Acta A, 141, 135143.

    • Search Google Scholar
    • Export Citation
  • Hui, J., Zhang, X., Zhang, Z., Wang, S., Tao, L., Wei, Y. & Wang, X. (2012): Fluoridated HAp: Ln3þ (Ln ¼ Eu or Tb) nanoparticles for cell-imaging. Nanoscale, 4, 69676970.

    • Search Google Scholar
    • Export Citation
  • Inbar, Y., Chen, Y. & Hadar, Y. (1989): Solid-state C-13 nuclear magnetic-resonance and infrared-spectroscopy of composted organic-matter. Soil Sci. Soc. Am. J., 53(6), 16951701.

    • Search Google Scholar
    • Export Citation
  • Jamuna, J.B., Mahadevamma, S., Nandini, D.C. & Paramahans, V.S. (2012): Banana (Musa sp. var. elakki bale) flower and pseudostem: dietary fiber and associated antioxidant capacity. J. Agr. Food Chem., 60, 427432.

    • Search Google Scholar
    • Export Citation
  • Liu, L., Cao, J., Huang, J., Cai, Y. & Yao, J. (2010): Extraction of pectin with different degrees of esterification from mulberry branch bark. Bioresource Technol., 101, 32683273.

    • Search Google Scholar
    • Export Citation
  • Maisara, S.M.A. & Pat, M.L. (2011): Synthesis and characterization of hydroxyapatite nanoparticles and β-TCP particles. 2nd International Conference on Biotechnology and Food Science IPCBEE, IACSIT Press, Singapore. 7.

    • Search Google Scholar
    • Export Citation
  • Narayanan, K.B. & Sakthivel, N. (2010): Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interfac., 156(1-2), 113.

    • Search Google Scholar
    • Export Citation
  • Preethi, P. & Balakrishnamurthy, G. (2011): Assessment of banana cultivars for pigment extraction from bracts, its suitability and stability as food colourant. Int. J. Process Postharvest Technol. (IJPTI), 2(2), 98101.

    • Search Google Scholar
    • Export Citation
  • Ranganna, S. (1986): Handbook of analysis and quality control for fruits and vegetable products. Tata McGraw-Hill Publishing Co. Ltd, New Delhi, pp. 4042.

    • Search Google Scholar
    • Export Citation
  • Rosenbohm, C., Lundt, I., Christensen, T.M.I.E. & Young, N.W.G. (2003): Chemically methylated and reduced pectins: Preparation, characterization by 1H NMR spectroscopy, enzymatic degradation, and gelling properties. Carbohyd. Res., 338, 637649.

    • Search Google Scholar
    • Export Citation
  • Suchanek, W. & Yoshimura, M. (1998): Processing and properties of hydroxyapatite based biomaterials for use as hard tissue replacement implants. J. Mater. Res., 13, 94117.

    • Search Google Scholar
    • Export Citation
  • Tang, W., Yuan, Y., Liu, C., Wu, Y., Lu, X. & Qian, J. (2014): Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine-UK., 9, 397412.

    • Search Google Scholar
    • Export Citation
  • Winning, H., Viereck, A., Norgaard, L., Larsen, J. & Engelsen, S.B. (2007): Quantification of the degree of blockiness in pectins using 1H NMR spectroscopy and chemometrics. Food Hydrocolloid., 21, 256266.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., Liu, C., Fan, L., Shi, J., Jia, H., Qi, Q., Sun, L. & Chen, F. (2013): Fabrication of heparinized hierarchically hollow hydroxyapatite microspheres as bone substitute for controlled growth factors delivery. RSC Adv., 3, 74867494.

    • Search Google Scholar
    • Export Citation
  • Yu, M., Zhou, K., Zhang, F. & Zhang, D. (2014): Porous HA microspheres as drug delivery: effects of porosity and pore structure on drug loading and in vitro release. Ceram. Int., 40, 1261712621.

    • Search Google Scholar
    • Export Citation
  • Zeng, J., Li, R., Liu, S. & Zhang, L. (2011): Fiber-like TiO2 nanomaterials with different crystallinity phases fabricated via a green pathway. ACS Appl. Mater. Inter., 3, 20742079.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Hui, J., Yang, B., Yang, Y., Fan, D., Liu, M., Tao, L. & Wei, Y. (2013): PEGylation of fluoridated hydroxyapatite (FAp):Ln3þ nanorods for cell imaging. Polym. Chem.-UK., 4, 41204125.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 9 0 0
Mar 2021 4 0 0
Apr 2021 1 0 0
May 2021 6 0 0
Jun 2021 24 0 0
Jul 2021 23 0 0
Aug 2021 0 0 0