Temperature uniformity and heating rate subjected to radio frequency (RF) heating have major impact on the quality of treated low moisture foods. The objective of this paper was to analyse the influence of electrode distance on the heating behaviour of RF on condition that the sample shape, size, and location between the electrodes were defined. Considering peanut butter (PB) and wheat flour (WF) as sample food, a 3D computer simulation model was developed using COMSOL, which was experimentally validated by a RF machine (27.12 MHz, 6 kW). Specifically, the electrode distances were selected as 84, 89, 93, 99 and 89, 93, 98, 103 (mm) for RF heating of PB and WF, respectively. Results showed that the simulated results and experimental data agreed well; the temperature-time histories of the RF heating of PB and WF were approximate straight lines; both the temperature uniformity index and the heating rate decreased with the increase of the electrode distance; the heating rate had a negative logarithmic linear relationship with the electrode distance, which was independent of the types, geometry shapes and sizes of low moisture foods.