Author: F.Á. Mohos1
View More View Less
  • 1 Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6724 Szeged, Mars tér 7, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

This paper presents a structural model of complex materials that are partly or entirely of cellular structure, and a new model of thermodynamics, which can be applied to the processes taking place in complex materials. Since the complex materials always contain cellular fraction, the supposition of cellular equilibrium is real. The complex materials are characterized by polyagent behaviour. Therefore, new concepts such as principal variables, redundancy, macroscopic/microscopic uncertainty are defined, moreover, the application of chemical thermodynamics is limited to micro processes only, and the free energy (F) and the free enthalpy (G) function cannot be generally applied to calculations concerning the bulk amount. Temperature as only a local intensive variable can be discussed. The first law of thermodynamics is expressed in the traditional way. The second law applied to the processes taking place both in open and in adiabatically closed systems is formulated as in words as an equation of stability, completed by the relations to first and second differential of entropy. In connection with the second law the Damköhler balance equation system, the Rabinowitsch–Mooney equation, and the application of dimensional analysis are presented. Only the apparent thermal capacities can be used for complex materials in general. The data of specific thermal capacity of complex materials in the proximity of absolute zero temperature are not sufficient for drawing conclusions on their entropy. The concept ‘shelf-life’ is essential in food science and practice, a Monte-Carlo method is presented for its calculation.

  • Al-Azawy, M.G., Turan, A. & Revell, A. (2017): Investigating the impact of non-Newtonian blood models within a heart pump. Int. J. Numer. Method. Biomed. Eng., 33, DOI: 10.1002/cnm.2780 (last accessed: 07 March 2018).

    • Search Google Scholar
    • Export Citation
  • Amend, J.P., Larowe, D.E., Mccollom, T.M. & Shock, E.L. (2012): The energetics of organic synthesis inside and outside the cell. Phylos. T. Roy. Soc. B., 368, (1622), 20120255.

    • Search Google Scholar
    • Export Citation
  • Bagley, E.B. (1957): End corrections in the capillary flow of polyethylene. J. Appl. Phys., 28, 624627.

  • Bagley, E.B., Christianson, D.D. & Martindale, J.A. (1988): Uniaxial compression of a hard wheat flour dough: Data analysis using the upper convected Maxwell model. J. Texture Stud., 19, 289305.

    • Search Google Scholar
    • Export Citation
  • Belousov, B.P. (1959): Periodicheski deistvuyushchaya reaktsia i ee mekhanism (Periodically acting reaction and its mechanism) –in: Sbornik referatov po radiotsionnoi meditsine, 1958 (Collection of abstracts on radiation medicine, 1958) Medgiz, Moscow, pp. 145147.

    • Search Google Scholar
    • Export Citation
  • Belousov, B.P. (1985): A periodic reaction and its mechanism -in: Field, R.J. & Burger, M. (Eds) Oscillations and traveling waves in chemical systems. Wiley, New York, pp. 605-613.

    • Search Google Scholar
    • Export Citation
  • Benedek, P. & LáSzló, A. (1965): Grundlagen des Chemieingenieurwesens. Deutscher Verlag für Grundstoffindustrie, Leipzig, Chapter VI., Section 5.

    • Search Google Scholar
    • Export Citation
  • Boyce, W.E. & Diprima, R.C. (2012): Elementary differential equations and boundary value problems. 10th ed., John Wiley & Sons, WileyPLUS (Chapter 9), pp. 495589.

    • Search Google Scholar
    • Export Citation
  • Callen, H.B. (1985): Thermodynamics and introduction to thermostatistics. 2nd ed., John Wiley & Sons, Inc., New York, pp. 335364.

  • Chen, C.S. (1985): Thermodynamical analysis of the freezing and thawing of foods: Enthalpy and apparent specific heat. J. Food Sci., 50, 11581162.

    • Search Google Scholar
    • Export Citation
  • Choi, Y. & Okos, M.R. (1986): Effects of temperature and composition on the thermal properties of foods. -in: La Maguer, M. & Jelen P. (Eds) Food engineering and process applications, Vol. 1, Transport phenomena, Elsevier App. Sci. Pub., London, New York, pp. 93101.

    • Search Google Scholar
    • Export Citation
  • Cogswell, F.N. (1972): Converging flow of polymer melts in extrusion dies. Polym. Eng. Sci., 12(1), 6473.

  • Cogswell, F.N. (1978): Converging flow and stretching flow: A compilation. J. Non-Newton. Fluid, 4, 2338.

  • Cogswell, F.N. (1981): Polymer melt rheology. Halsted Press, New York, NY, 180 pages.

  • Dickinson, E. (1992): An introduction to food colloids. Oxford Science Publications, Oxford University Press, pp. 100115.

  • Domalski, E.S., Jobe, JR., T.L. & Milne, T.A. (1986): Thermodynamic data for biomass conversion and waste incineration. A product of the Solar Technical Information program, prepared by the National Bureau of Standards under contract to the Solar Technical Information Program of the Solar Energy Research Institute (USA), Appendices A and B.

    • Search Google Scholar
    • Export Citation
  • Franke, K. & Tscheuschner, H.D. (1991): Modelling of the high shear rate conching process for chocolate. J. Food Eng., 14, 103115.

  • Fricke, B.A. & Becker, B.R. (2001): Evaluation of thermophysical property models for foods. Int. J. Refrig., 7, 311330.

  • Gibson, A.G. (1988): Converging dies. -in: Collyer, A.A. & Clegg, D.W. (Eds) Rheological measurements. Elsevier Applied Science, New York, NY, pp. 4992.

    • Search Google Scholar
    • Export Citation
  • Gilbert, E.N. (1966): Information theory after 18 years. Science, 152, 320326.

  • Gyarmati, I. (1970): Non-equilibrium thermodynamics –Field theory and variational principles. Springer-Verlag, Berlin, Heidelberg, New York, Chapters II–III, pp. 1787.

    • Search Google Scholar
    • Export Citation
  • Heldman, D.R. (1975): Food process engineering. AVI, Westport, Connecticut, 401 pages.

  • Hirsch, M.W., Smale, S. & Devaney, R.L. (2004): Differential equations, dynamical systems, and an introduction to chaos. Elsevier, Chapter 14, pp. 230231.

    • Search Google Scholar
    • Export Citation
  • Holland, B., Welch, A.A., Unwin, I.D., Buss, D.H., Paul, A.A. & Southgate, D.A.T. (1991): McCance and Widdowson’s –The composition of foods. 5th ed. Royal Society of Chemistry and MAFF. Cambridge, U.K.

    • Search Google Scholar
    • Export Citation
  • Lapitov, E.K. & Filatov, B.S. (1963): Kolloidnüj Zhurnal, 25, 4349.

  • Larowe, D.E. & Amend, J.P. (2016): The energetics of anabolism in natural settings. ISME J., 10, 12851295.

  • Lasalle, J. & Lefschetz, S. (1961): Stability by Liapunov’s direct method with applications. Academic Press, New York–London, 514 pages.

    • Search Google Scholar
    • Export Citation
  • Liu, G-T., Wang, X.-J., Ai, B.-Q. & Liu, L.-G. (2004): Numerical study of pulsating flow through a tapered artery with stenosis. Chinese J. Phys., 42, 401409.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E.N. (1987): Deterministic and stochastic aspects of atmospheric dynamics. -in: Nicolis, C. & Nicolis, G. (Eds) Irreversible phenomena and dynamical system analysis in geosciences. D. Reidel Publ. Co., pp. 159179.

    • Search Google Scholar
    • Export Citation
  • Macsihin, JU.A. & Macsihin, SZ.A. (1987): Élelmiszeripari termékek reológiája (Rheology of food industrial materials). Mazogazdasági Kiadó, Budapest, pp. 221229.

    • Search Google Scholar
    • Export Citation
  • Matolcsi, T. (2004): Ordinary thermodynamics. Akadémiai Kiadó, Budapest, pp. 11, 382385.

  • Mohos, F.Á. (1982): A kémiai technológiák szerkezetelméletének alkalmazása az édesipari gyakorlatban (The application of structure theory of chemical engineering in the confectionery practice). Cand. Theses, The Hungarian Academy of Sciences, Budapest.

    • Search Google Scholar
    • Export Citation
  • Mohos, F.Á. (1990): Édesipari technológia (Confectionery technology). Lecture notes, University of Horticulture and Food Technologies, Budapest, 266 pages.

    • Search Google Scholar
    • Export Citation
  • Mohos, F.Á. (2010): Confectionery and chocolate engineering –Principles and applications. Wiley-Blackwell, Oxford, UK, pp. 56, 12.

    • Search Google Scholar
    • Export Citation
  • Mohos, F.Á. (2017): Confectionery and chocolate engineering –Principles and applications. John Wiley & Sons, Ltd., 2nd ed., p. 4; Appendix 3., pp. 645662.

    • Search Google Scholar
    • Export Citation
  • Reher, E.-O., Haroske, D. & Köhler, K. (1969a): Eine Analyse der nicht-Newtonscher Reibungsgesetze und deren Anwendnung für die Rohrströmung. Teil I. Chem. Techn., Teil I: 21(3), 137143.

    • Search Google Scholar
    • Export Citation
  • Reher, E.-O., Haroske, D. & Köhler, K. (1969b): Eine Analyse der nicht-Newtonscher Reibungsgesetze und deren Anwendnung für die Rohrströmung. Teil II., I., Chem. Techn., 21(5), 281284.

    • Search Google Scholar
    • Export Citation
  • Schrödinger, E. (1967): What is life? The physical aspects of living cells. Cambridge University Press, Cambridge, U.K, Chapter 6, pp. 153164.

    • Search Google Scholar
    • Export Citation
  • Shannon, C.E. (1948): A mathematical theory of communication. Bell Syst. Tech. J., 27, 379423, 623656. Re-issued December, 1957: Monograph B-1598.

    • Search Google Scholar
    • Export Citation
  • Smith, E. (2008A): Thermodynamics of natural selection I: Energy flow and the limits on organization. J. Theor. Biol., 252, 185197.

  • Smith, E. (2008b): Thermodynamics of natural selection II: Chemical Carnot cycles. J. Theor. Biol., 252, 198212.

  • Smith, E. (2008c): Thermodynamics of natural selection III: Landauer’s principle in computation and chemistry. J. Theor. Biol., 252, 213220.

    • Search Google Scholar
    • Export Citation
  • Steffe, J.F. (1996): Rheological methods in food process engineering. 2nd ed., Freeman Press, USA, pp. 110121.

  • Strogatz, S.H. (1994): Nonlinear dynamics and chaos. Addison-Wesley, Reading, MA, 498 pages.

  • Szilard, L. (1929): Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys., 53, 840856.

    • Search Google Scholar
    • Export Citation
  • Tarasov, V.V. (1945): The theory of the specific heat of high polymers, II. Rubber, graphite. Comp. Rend. Acad. Sci. U.R.S.S., 46, 110114.

    • Search Google Scholar
    • Export Citation
  • Tuszynski, J. & Kurzynski, M. (2003): Introduction to molecular biophysics, CRC Press LLC, 584 pages.

  • USDA (1975): Composition of foods. Agricultural handbook, 1975, No. 8, U.S. Departrnent of Agriculture, Washington, D.C., pp. 481509.

    • Search Google Scholar
    • Export Citation
  • USDA (1996): Nutrient database for standard reference, Release 11. U.S. Department of Agriculture, Washington, D.C.

  • USDA (1999): Nutrient database for standard reference, Release 13. U.S. Department of Agriculture, Washington, D.C.

  • VDI (1991): VDI-Wärmeatlas, 6th ed., VDI-Verlag, Düsseldorf.

  • Velasquez, J.L. (2009): Finding simplicity in complexity: General principles of biological and nonbiological organization. J. Biol. Phys., 35(3), 209221.

    • Search Google Scholar
    • Export Citation
  • Wunderlich, B. (2005): Thermal analysis of polymeric materials. Springer-Verlag, Berlin, 894 pages.

  • Zhabotinsky A.M. & Zaikin, A.N. (1971): Spatial effects in a self-oscillating chemical system. -in: Sel’kov, E.E. (Ed.) Oscillatory processes in biological and chemical systems, Vol. II. Science Publ., Puschino. pp. 279283.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 2 0 0
May 2021 4 0 0
Jun 2021 1 0 0
Jul 2021 2 0 0
Aug 2021 4 0 0
Sep 2021 4 0 0
Oct 2021 0 0 0