View More View Less
  • 1 Food Industry Research Institute, Carretera al Guatao km 3 ½, Havana, POB 19200., Cuba
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Response surface methodology was used to optimize spray-drying process for concentrated orange juice. Independent variables were: inlet air temperature (130–170 ºC) and maltodextrin 12DE content (60–75% wet basis (wb)). Responses variables were powder yield, moisture, and ascorbic acid retention. Moisture content was negatively affected by inlet air temperature, while ascorbic acid retention was directly related. Powder yield and ascorbic acid retention increased with the rise in maltodextrin content, while moisture content was negatively affected by maltodextrin content. Multiple response optimisation indicated that an inlet air temperature of 155 ºC and maltodextrin content of 74% wb were predicted to provide 77% powder yield, 3.7% wb moisture content, and 89% ascorbic acid retention.

  • AOAC (2006): Official methods of analysis, 18th ed., Association of Official Analytical Chemists, Gaithersburg, MD. Method 967.21

  • Buffo, R.A., Probst, K., Zehentbauer, G., Luo, Z. & Reineccius, G.A. (2002): Effects of agglomeration on the properties of spray-dried encapsulated flavours. Flavour Frag. J., 17, 292299.

    • Search Google Scholar
    • Export Citation
  • Cesar, T.B., Aptekmann, N.P., Araujo, M.P., Vinagre, C.C. & Maranhao, R.C. (2010): Orange juice decreases lowdensity lipoprotein cholesterol in hypercholesterolemic subjects and improves lipid transfer to high-density lipoprotein in normal and hypercholesterolemic subjects. Nutr. Res., 30(10), 689694.

    • Search Google Scholar
    • Export Citation
  • Chegini, R.G. & Ghobadian, B. (2005): Effect of spray-drying conditions on physical properties of orange juice powder. Drying Technol., 23, 657668.

    • Search Google Scholar
    • Export Citation
  • Chegini, R.G. & Ghobadian, B. (2007): Spray dryer parameters for fruit juice drying. World J. Agric. Sci., 3, 230236

  • Chegini, R.G., Khazaei, J., Ghobadian, B. & Goudarzi, A.M. (2008): Prediction of process and product parameters in an orange juice spray dryer using artificial neural networks. J. Food Eng., 84, 534543.

    • Search Google Scholar
    • Export Citation
  • Cuevas-Glory, L., Bringas-Lantigua, M., Sauri-Duch, E., Sosa-Moguel, O. & Pino, J. (2017): Spray drying and process optimization of sour orange juice. Acta Alimentaria, 46, 1726.

    • Search Google Scholar
    • Export Citation
  • Fazaeli, M., Emam-Djomeh, Z., Ashtari, A.K. & Omid, M. (2012): Prediction of the physicochemical properties of spray-dried black mulberry (Morus nigra) juice using artificial neural networks. Food Bioprod. Process., 90, 667675.

    • Search Google Scholar
    • Export Citation
  • Gharsallaoui, A., Roudaut, G., Voilley, C.O. & Saurel, R. (2007): Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int., 40, 11071121.

    • Search Google Scholar
    • Export Citation
  • Goula, A.M. & Adamopoulos, K.G. (2010): A new technique for spray drying orange juice concentrate. Innov. Food Sci. Emerg., 11, 342351.

    • Search Google Scholar
    • Export Citation
  • Islam, M.Z., Kitamura, Y., Yamano, Y. & Kitamura, M. (2016): Effect of vacuum spray drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder. J. Food Eng., 169, 131140.

    • Search Google Scholar
    • Export Citation
  • Jaya, S. & Das, H. (2004): Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. J. Food Eng., 63, 125134.

    • Search Google Scholar
    • Export Citation
  • Kaya, A., Aydin, O. & Kolayli, S. (2010): Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food Bioprod. Process., 88, 165173.

    • Search Google Scholar
    • Export Citation
  • Krishnaiah, D., Nithyanandam, R. & Sarbatly, R. (2014): A critical review on the spray drying of fruit extract: Effect of additives on physicochemical properties. Crit. Rev. Food Sci., 54, 449473.

    • Search Google Scholar
    • Export Citation
  • Mishra, P., Mishra, S. & Mahanta, C.L. (2014): Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod. Process., 92, 252258.

    • Search Google Scholar
    • Export Citation
  • Montgomery, D.C. (2013): Design and analysis of experiments, John Wiley & Sons, New York. pp. 478553.

  • Moreira, G.E.G., De Azeredo, H.M.C., De Medeiros, M.F.D., De Brito, E.S. & De Souza, A.C.R. (2010): Ascorbic acid and anthocyanin retention during spray drying of acerola pomace extract. J. Food Process. Pres., 34, 915925.

    • Search Google Scholar
    • Export Citation
  • Movahhed, M.K. & Mohebbi, M. (2016): Spray drying and process optimization of carrot–celery juice. J. Food Process. Pres., 40, 212225.

    • Search Google Scholar
    • Export Citation
  • Murugesan, R. & Orsat, V. (2012): Spray drying for the production of nutraceutical ingredients – A review. Food Bioprocess. Technol., 5, 314.

    • Search Google Scholar
    • Export Citation
  • Muzaffar, K., Nayik, G.A. & Kumar, P. (2015): Stickiness problem associated with spray drying of sugar and acid rich foods: A mini review. J. Nutr. Food Sci., S12, 003

    • Search Google Scholar
    • Export Citation
  • O’Neil, C.E., Nicklas, T.A., Rampersaud, G.C. & Fulgoni, V.L. (2011): One hundred percent orange juice consumption is associated with better diet quality, improved nutrient adequacy, and no increased risk for overweight/obesity in children. Nutr. Res., 31(9), 673682.

    • Search Google Scholar
    • Export Citation
  • Patil, V., Kumar, A. & Singh, R. (2014): Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technol., 253, 230236.

    • Search Google Scholar
    • Export Citation
  • Phisut, N. (2012): Spray drying technique of fruit juice powder: Some factors influencing the properties of product. IFRJ, 19, 12971306.

    • Search Google Scholar
    • Export Citation
  • Rao, R.H.G. & Gupta, P.M. (2002): Development of spray dried orange juice blended skim milk powder. Lait, 82, 523529.

  • Shrestha, A.K., Ua-Arak, T., Aghikari, B. & Bhandari, B. (2007): Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int. J. Food Prop., 10, 661673.

    • Search Google Scholar
    • Export Citation
  • Singh, V.K., Mandhyan, B.L., Pandey, S. & Singh, R.B. (2013): Process development for spray drying of ber (Ziziphus jujube L.) juice. Am. J. Food Technol., 8(3), 183191.

    • Search Google Scholar
    • Export Citation
  • Tan, L.W., Taip, F.S., Ibrahim, M.N. & Kamil, R. (2011): Empirical modeling and control for spray drying of orange juice powder. 4th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO 2011; Kuala Lumpur; Malaysia; 19–21 April 2011.

  • Verma, A. & Singh, S.V. (2013): Spray drying of fruit and vegetable juices – A review. Crit. Rev. Food Sci., 55(5), 701709.

  • Wang, S., Konkol, E. & Langrish, T.A.G. (2011): Spray drying of fruit juice using proteins as additives. Dry. Technol., 29, 18681875.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 5 0 0
Mar 2021 7 0 0
Apr 2021 17 0 0
May 2021 11 0 0
Jun 2021 11 0 0
Jul 2021 6 0 0
Aug 2021 0 0 0