View More View Less
  • a Széchenyi István University, H-9200 Mosonmagyaróvár, Vár tér 2, Hungary
  • | b Széchenyi István University, H-9200 Mosonmagyaróvár, Vár tér 2, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Our research target was to utilise vine-branch, existing in huge amounts, for energetic purposes. During our experiments, microwave (MW) treatments of different powers (400–1600 W), pressures (1–5 bar), temperatures (120–180 °C), and treatment times (3–30 min) were applied to change the physical condition of vine-branch. After MW, enzymatic hydrolysis (EH) was used (85–100 h, 37 °C). In addition, beside MW, comparisons were made regarding various treatment methods: untreated (UTE), cooking plate (CP), and autoclave (AC), to determine to what extent they affect the final glucose yield. This yield can even further be increased by MW pre-treatment (50 W, 3–30 min, 40 °C) of the enzyme used during the hydrolysis, which reinforces the argument that enzyme activity can be increased by irradiation. A difference of 22.1% was detected among the glucose yield values in untreated and treated enzyme processes.

  • Bollók, M., Réczey, K. & Zacchi, G. (2000): Simultaneous saccharification and fermentation of steam-pretreated spruce to ethanol. Appl. Biochem. Biotech., 84, 6980.

    • Search Google Scholar
    • Export Citation
  • Borrion, A.L., Mcmanus, M.C. & Hammond, G.P. (2012): Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review. Renew. Sust. Energ. Rev., 16, 46384650.

    • Search Google Scholar
    • Export Citation
  • Cherubini, F. & Strømman, A.H. (2011): Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresource Technol., 102, 437451.

    • Search Google Scholar
    • Export Citation
  • Donepudi, A. & Muthukumarappan, K. (2009): Effect of microwave pretreatment on sugar recovery from corn stover. ASABE International Conference, Reno, Nevada, June 21–24, doi:10.13031/2013.27442, paper no. 097057.

  • Duff, S. & Murray, W. (1996): Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technol., 55, 133.

    • Search Google Scholar
    • Export Citation
  • Feng, P., Shulin, X., Shengshuan, Y., Chao, Z., Bing, L. & Yong, K. (2012): Effects of MW power and MW irradiation time on pretreatment efficiency and characteristics of corn stover using combination of SE and MW irradiation (SE-MI) pretreatment. Bioresource Technol., 118, 111119.

    • Search Google Scholar
    • Export Citation
  • Feng, P., Shulin, X., Shengshuan, Y., Chao, Z., Bing, L. & Yong, K. (2013): Effects of combination of SE and MW irradiation (SE-MI) pretreatment on enzymatic hydrolysis, sugar yield and structural properties of corn stover. Ind. Crop. Prod., 42, 402408.

    • Search Google Scholar
    • Export Citation
  • Gnansounou, E. (2010): Production and use of lignocellulosic bioethanol in Europe: Current situation and perspectives. Bioresource Technol., 101, 48424850.

    • Search Google Scholar
    • Export Citation
  • Hu, Z. & Wen, Z. (2008): Enhancing enzymatic digestibility of switchgrass by MW-assisted alkali pretreatment. Biochem. Eng. J., 38, 369378.

    • Search Google Scholar
    • Export Citation
  • Jørgensen, H., Kristensen, J.B. & Felby, C. (2007): Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuel. Bioprod. Bior., 1, 119134.

    • Search Google Scholar
    • Export Citation
  • Kádár, ZS. , Szengyel, ZS. & Réczey, K. (2004): Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crop. Prod., 20, 103110.

    • Search Google Scholar
    • Export Citation
  • Karuppuchamy, V. & Muthukumarappan, K. (2009): Enzymatic hydrolysis of MW pretreated soy hull. ASABE/ CSBE 2009 North Central Intersectional Meeting. ASABE paper no. SD09-401.

    • Search Google Scholar
    • Export Citation
  • Keshwani, D.R., Cheng, J.J., Burns, J.C., Li, L. & Chiang, V. (2007): Microwave pretreatment of switchgrass to enhance enzymatic hydrolysis. ASABE International Conference. St. Joseph, MI, ASABE paper no. 077127.

    • Search Google Scholar
    • Export Citation
  • Lark, N., Xia, Y., Qin, C.G., Gong, C.S. & Tsao, G.T. (1997): Production of ethanol from recycled paper sludge using cellulase and yeast. Kluyveromyces marxianus, Biomass Bioenerg., 12, 135143.

    • Search Google Scholar
    • Export Citation
  • Lemmer, B., Jákói, Z., Beszédes, S., Keszthelyi-Szabó, G. & Hodúr, C. (2017): Microwave enhanced enzymatic hydrolysis of corncob residues. -in: Magó, L., Kurják, Z. & Szabó, I. (Eds) SYNERGY - Engineering, Agriculture and Green Industry Innovation. Gödöllő, Hungary, 16–19 October 2017. p. 91.

    • Search Google Scholar
    • Export Citation
  • Ma, H., Liu, W., Chenc, X., Wua, Y. & Yua, Z. (2009): Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technol., 100(3), 12791284.

    • Search Google Scholar
    • Export Citation
  • Mcmillan, J.D. (1994): Pretreatment of lignocellulosic biomass. -in: Himmel, M.E., Baker, J.O. & Overend, R.P. (Eds) Enzymatic conversion of biomass for fuels production. Am. Chem. Soc., Washington, DC, pp. 292324.

    • Search Google Scholar
    • Export Citation
  • Muthuvelayudham, R. & Viruthagiri, T. (2006): Fermentative production and kinetics of cellulose protein on Trichoderma reesei using sugar cane bagasse and rice straw. Afr. J. Biotechnol. 5, 18731881.

    • Search Google Scholar
    • Export Citation
  • Palonen, H., Thomsen, A.B., Tenkanen, M., Schmidt, A.S. & Viikari, L. (2004): Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl. Biochem. Biotech., 117, 117.

    • Search Google Scholar
    • Export Citation
  • Saha, B.C., Biswas, A. & Cotta, M.A. (2008): MW pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. J. Biobased Mater. Bio., 2(3), 210217.

    • Search Google Scholar
    • Export Citation
  • Schmidt, A.S. & Thomsen, A.B. (1998): Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technol., 64, 139151.

  • Sun, Y. & Cheng, J.J. (2005): Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technol., 96, 15991606.

    • Search Google Scholar
    • Export Citation
  • Viola, E., Cardinale, M., Santarcangelo, R., Villone, A. & Zimbardi, F. (2008): Ethanol from eel grass via SE and enzymatic hydrolysis. Biomass. Bioenerg., 32, 613618.

    • Search Google Scholar
    • Export Citation
  • Zaldivar. M. , Velasquez, J.C., Contreras, I. & Perez, L.M. (2001): Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: Its potential use in waste cellulose degradation and/or biocontrol. Electron. J. Biotechn., 4(3), 17.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., Zhou, Y., Zheng, G. & Liu, D. (2010): Microwave pretreatment of substrates for cellulase production by solid-state fermentation. Appl. Biochem. Biotechnol., 160, 15571571.

    • Search Google Scholar
    • Export Citation
  • Zhu, S.D., Yu, Z.N., Wu, Y.X., Zhang, X., Li, H. & Gao, M. (2005): Enhancing enzymatic hydrolysis of rice straw by microwave pretreatment. Chem. Eng. Commun., 192(12), 15591566.

    • Search Google Scholar
    • Export Citation
  • Zhu, S., Wu, Y., Yu, Z., Zhang, X., Li, H. & Gao, M. (2006): The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresource Technol., 97, 19641968.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 2 0 0
Mar 2021 0 0 0
Apr 2021 3 0 0
May 2021 0 0 0
Jun 2021 6 1 2
Jul 2021 0 0 0
Aug 2021 0 0 0