View More View Less
  • a Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
  • | b Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Apple cubes were osmotically dehydrated with 40 °Bx sucrose and sorbitol solutions. Light microscopy was used to observe the microstructure of fresh and osmotically dehydrated samples. Peleg’s model could fit the experimental data and describe the mass transfer kinetics of water loss (WL) and solid gain (SG). The use the sorbitol as osmotic agent, the increase of temperature and concentration of the solution increased the WL during the osmotic dehydration. The average cellular parameters, area and perimeter (size), and circularity, elongation, roundness, and compactness (shape) of fresh samples were 14.28±6.65×103 μm2 and 0.486 mm, and 0.73, 1.56, 0.70, 0.83, respectively. The osmotically dehydrated samples presented a decrease in area, circularity, roundness and compactness and an increase in the elongation of the cells, and these changes were higher in samples treated with sorbitol.

  • AOAC (2002): AOAC. Association of the Official Analytical Chemists - Official Methods of Analysis, Official Method 934.06.

  • Assis, F.R., Morais, R.M.S.C. & Morais, A.M.M.B. (2017): Mathematical modelling of osmotic dehydration kinetics of apple cubes. J. Food Process. Pres., 41. DOI: 10.1111/jfpp.12895.

    • Search Google Scholar
    • Export Citation
  • Brochier, B., Marczak, L.D.F. & Noreña, C.P.Z. (2014): Osmotic dehydration of yacon using glycerol and sorbitol as solutes: Water effective diffusivity evaluation. Food Bioprocess Tech., 8, 623636.

    • Search Google Scholar
    • Export Citation
  • Chauhan, O.P., Sing, A., Singh, A., Raju, S. & Bawa, A.S. (2011): Effects of osmotic agents on colour, textural, structural, thermal, and sensory properties of apple slices. Int. J. Food Prop., 14, 10371048.

    • Search Google Scholar
    • Export Citation
  • Karunasena, H.C.P., Hesami, P., Senadeera, W., Gu, Y.T., Brown, R.J. & Oloyede, A. (2014): Scanning electron microscopic study of microstructure of Gala apples during hot air drying. Dry. Technol., 32, 455468.

    • Search Google Scholar
    • Export Citation
  • Khan, M.R. (2012): Osmotic dehydration technique for fruits preservation – A review. Pak. J. Food Sci., 22, 7185.

  • Lazarides, H.N., Katsanidis, E. & Nickolaidis, A. (1995): Mass transfer kinetics during osmotic preconcentration aiming at minimal solid uptake. J. Food Eng., 25, 151166.

    • Search Google Scholar
    • Export Citation
  • Lenart, A. (1996): Osmo-convective drying of fruits and vegetables: Technology and application. Dry. Technol., 14, 391413.

  • Lewicki, P.P. & Pawlak, G. (2003): Effect of drying on microstructure of plant tissue. Dry. Technol., 21, 657683.

  • Lewicki, P.P. & Porzecka-Pawlak, R. (2005): Effect of osmotic dewatering on apple tissue structure. J. Food Eng., 66, 4350.

  • Mayor, L., Moreira, R., Chenlo, F. & Sereno, A.M. (2006): Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions. J. Food Eng., 74, 253262.

    • Search Google Scholar
    • Export Citation
  • Mayor, L., Pissarra J. & Sereno, A.M. (2008): Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. J. Food Eng., 85, 326339.

    • Search Google Scholar
    • Export Citation
  • Mayor, L., Silva, M.A. & Sereno, A.M. (2005): Microstructural changes during drying of apple slices. Dry. Technol., 23, 22612276.

  • Misljenovic, N., Koprivica, G., Levic, L., Filipcev, B. & Kuljanin, T. (2009): Osmotic dehydration of red cabbage in sugar beet molasses: Mass transfer kinetics. Acta Period. Technol., 40, 145154.

    • Search Google Scholar
    • Export Citation
  • Nieto, A.B., Salvatori, D.M., Castro, M.A. & Alzamora, S.M. (2004): Structural changes in apple tissue during glucose and sucrose osmotic dehydration: Shrinkage, porosity, density and microscopic features. J. Food Eng., 269278.

    • Search Google Scholar
    • Export Citation
  • Palou, E., López-Malo, A., Argaiz, A. & Welti, J. (1994): The use of Peleg’s equation to model osmotic concentration of papaya. Dry. Technol., 12, 965978.

    • Search Google Scholar
    • Export Citation
  • Patel, S. & Goyal, A. (2012): The current trends and future perspectives of prebiotics research: A review. 3 Biotech, 22, 115125.

  • Peleg, M. (1988): An empirical model for the description of moisture sorption curves. J. Food Sci., 53, 12161219.

  • Quiles, A., Pérez-Munuera, I., Hernando. I. & Lluch, M.A. (2003): Impact of mass transport on microstructure of Granny Smith apple parenchyma during osmotic dehydration. J. Sci. Food Agr., 83, 425429.

    • Search Google Scholar
    • Export Citation
  • Rodríguez, M.M., Arballo, J.R., Campañone, L.A., Cocconi, M.B., Pagano, A.M. & Mascheroni, R.H. (2013): Osmotic dehydration of nectarines: Influence of the operating conditions and determination of the effective diffusion coefficients. Food Bioprocess Tech., 6, 27082720.

    • Search Google Scholar
    • Export Citation
  • Roopa, N., Chauhan, O.P., Raju, P.S., Das Gupta, D.K., Singh, R.K.R. & Bawa, A.S. (2012): Process optimization for osmo-dehydrated carambola (Averrhoa carambola L) slices and its storage studies. J. Food Sci. Tech., 51, 24722480.

    • Search Google Scholar
    • Export Citation
  • Seguí, L., Fito, P.J. & Fito, P. (2012): Understanding osmotic dehydration of tissue structured foods by means of a cellular approach. J. Food Eng., 110, 240247.

    • Search Google Scholar
    • Export Citation
  • Silveira, M. & Jonas, R. (2002): The biotechnological production of sorbitol. Appl. Microbiol. Biot., 59, 400408.

  • Waliszewski, K.N., Delgado, J.L. & García, M.A. (2002): Equilibrium concentration and water and sucrose diffusivity in osmotic dehydration of pineapple slabs. Dry. Technol., 20, 527538.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 1 0 0
Feb 2021 3 0 0
Mar 2021 8 0 0
Apr 2021 14 0 0
May 2021 3 0 0
Jun 2021 3 0 0
Jul 2021 0 0 0