View More View Less
  • a Southwest University, Chongqing 400715, P.R. China
  • | b Chongqing Three Gorges University, Chongqing 404100, P.R. China
  • | c Southwest University, Chongqing 400715, P.R. China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

The present study was performed to investigate the effect of β-aminobutyric acid (BABA) treatment on defence activation in grape berries and to analyse its cellular mechanism. The results implied that BABA treatment at an effective concentration of 20 mM significantly inhibited gray mould rot caused by Botrytis cinerea in grape berries by inducing resistance. Accordingly, 20 mM BABA triggered a priming defence in grape suspension cells, since only the BABA-treated cells exhibited an accelerated ability for augmenting defence responses upon the pathogen inoculation. The primed cellular reactions were related to an early H2O2 burst, prompt accumulation of stilbene phytoalexins and activation of PR genes. Thus, we assume that 20 mM BABA can induce resistance to B. cinerea infection in intact grape berries perhaps via intercellular priming defence. Moreover, the BABA-induced priming defence is verified, because no negative effects on cell growth, anthocyanin synthesis, and quality impairment in either grape cells or intact berries were observed under low pathogenic pressure.

  • Abeles, F.B., Bosshart, R.P., Forrence, L.E. & Habig, W.H. (1971): Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol., 47, 129134.

    • Search Google Scholar
    • Export Citation
  • Aziz, A., Trotel-Aziz, P., Dhuicq, L., Jeandet, P., Couderchet, M. & Vernet, G. (2006): Chitosan oligomers and copper sulfate induce grapevine defence reactions and resistance to gray mold and downy mildew. Phytopathology, 96, 11881194.

    • Search Google Scholar
    • Export Citation
  • Belchí-Navarro, S., Almagro, L., Sabater-Jara, A.B., Fernández-Pérez, F., Bru, R. & Pedreño, M.A. (2013): Early signaling events in grapevine cells elicited with cyclodextrins and methyl jasmonate. Plant Physiol. Bioch., 62, 107110.

    • Search Google Scholar
    • Export Citation
  • Cheng, G.W. & Breen, P.J. (1991): Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J. Am. Soc. Hortic. Sci., 116, 865869.

    • Search Google Scholar
    • Export Citation
  • Cohen, Y., Vaknin, M. & Mauch-Mani, B. (2016): BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica, 44, 513538.

    • Search Google Scholar
    • Export Citation
  • Conrath, U., Beckers, G.J., Langenbach, C.J. & Jaskiewicz, M.R. (2015): Priming for enhanced defense. Annu. Rev. Phytopathol., 53, 97119.

    • Search Google Scholar
    • Export Citation
  • El-Metwally, M.A., Tarabih, M.E. & El-Eryan, E.E. (2014): Effect of application of β-aminobutyric acid on maintaining quality of crimson seedless grape and controlling postharvest diseases under cold storage condition. Plant Pathology J., 3, 139151.

    • Search Google Scholar
    • Export Citation
  • Gozzo, F. & Faoro, F. (2013): Systemic acquired resistance (50 years after discovery): Moving from the lab to the field. J. Agr. Food Chem., 61, 1247312491.

    • Search Google Scholar
    • Export Citation
  • Granado, J., Felix, G. & Boller, T. (1995): Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiol., 107, 485490.

    • Search Google Scholar
    • Export Citation
  • Huot, B., Yao, J., Montgomery, B.L. & He, S.Y. (2014): Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant, 7, 12671287.

    • Search Google Scholar
    • Export Citation
  • Le Henanff, G., Farine, S., Kieffer-Mazet, F., Miclot, A.S., Heitz, T., Mestre, P., Bertsch, C. & Chong, J. (2011): Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta, 234, 405417.

    • Search Google Scholar
    • Export Citation
  • Liao, Y.X., Fei, L.H., Xia, M.X., Wu, D.Z., Chen, S. & Wang, K.T. (2018): A study on different modes of disease resistance response induced by β-aminobutyric acid in grape berries. Food Science, 39, 221228 (in Chinese with English abstract).

    • Search Google Scholar
    • Export Citation
  • Livak, K.J. & Schmittgen, T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402408.

    • Search Google Scholar
    • Export Citation
  • Martinez-Esteso, M.J., Sellés-Marchart, S., Vera-Urbina, J.C., Pedreño, M.A. & Bru-Martinez, R. (2009): Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors. J. Proteomics, 73, 331341.

    • Search Google Scholar
    • Export Citation
  • O'Brien, J.A., Daudi, A., Butt, V.S. & Bolwell, G.P. (2012): Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta, 236, 765779.

    • Search Google Scholar
    • Export Citation
  • Patterson, B.D., MacRae, E.A. & Ferguson, I.B. (1984): Estimation of hydrogen peroxide in plant extracts using titanium. Anal. Biochem., 139, 487492.

    • Search Google Scholar
    • Export Citation
  • Romanazzi, G., Sanzani, S.M., Bi, Y., Tian, S., Martínez, P.G. & Alkan, N. (2016): Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Tec., 122, 8294.

    • Search Google Scholar
    • Export Citation
  • Van Hulten, M., Pelser, M., Van Loon, L.C., Pieterse, C.M.J. & Ton, J. (2006): Costs and benefits of priming for defense in Arabidopsis. P. Natl. Acad. Sci. USA, 104, 56025607.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Liao, Y., Cao, S., Di, H. & Zheng, Y. (2015): Effects of benzothiadiazole on disease resistance and soluble sugar accumulation in grape berries and its possible cellular mechanisms involved. Postharvest Biol. Tec., 102, 5160.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Liao, Y., Xiong, Q., Kan, J., Cao, S. & Zheng, Y. (2016): Induction of direct or priming resistance against Botrytis cinerea in strawberries by β-aminobutyric acid and their effects on sucrose metabolism. J. Agr. Food Chem., 64, 58555865.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Wang, J., Zhang, J., Hou, C. & Wang, G. (2011): Effects of β-aminobutyric acid on control of postharvest blue mould of apple fruit and its possible mechanisms of action. Postharvest Biol. Tec., 61, 145151.

    • Search Google Scholar
    • Export Citation


The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)


Acta Alimentaria

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • The ISI Alerting Services

Total Cites
Impact Factor 0,458
Impact Factor
Journal Self Cites
5 Year
Impact Factor
Article Influence
% Articles
Citable Items
Journal Rank
Scite Score
Scite Score Rank
Food Science 215/299 (Q3)


Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
2021 Volume 50
per Year
per Year
Founder Magyar Tudományos Akadémia
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)


Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 20 0 0
Feb 2021 14 0 0
Mar 2021 21 0 0
Apr 2021 13 0 0
May 2021 1 0 0
Jun 2021 5 0 0
Jul 2021 0 0 0