View More View Less
  • 1 Akdeniz University, 07058, Antalya, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Transglutaminases catalyse the formation of an isopeptide bond between the group of γ-carboxamides of glutamine residues and primary amine groups of proteins. It is widely used in different food industries in dairy, meat, and bakery products. In this work, the effect of the copy number of gene expression cassette on the extracellular production of pro-MTGase under the GAP promoter in Pichia pastoris was elucidated. Expression vector carrying the Streptomyces mobaraensis pro-MTGase encoded gene was constructed and transformed into the P. pastoris X33. The production of pro-MTGase in single copy and three copies expression cassettes containing clones were compared under the same fermentation conditions. More than 30% enzyme activity was obtained from single copy expression cassette containing clone compared to three copies expression cassettes containing clone. Besides, the amount of the enzyme produced per cell was found to be 24% higher in the fermentation broth of single copy expression cassette containing clone. As a conclusion, there is an inverse correlation between the extracellular production of pro-MTGase and the copy number of gene expression cassette.

  • Carballo, J., Ayo, J. & Jimenez-Colmenero, F. (2006): Microbial transglutaminase and caseinate as cold set binders: Influence of meat species and chilling storage. LWT — Food Sci. Technol., 39, 692699.

    • Search Google Scholar
    • Export Citation
  • Clare, J.J., Romanos, M.A., Rayment, F.B., Rowedder, J.E., Smith, M.A., … & Henwood, C.A. (1991): Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 105, 205212.

    • Search Google Scholar
    • Export Citation
  • Dagar, V.K. & Khasa, Y.P. (2018): Combined effect of gene dosage and process optimization strategies on high-level production of recombinant human interleukin-3 (hIL-3) in Pichia pastoris fed-batch culture. Int. J. Biol. Macromol., 108, 9991009.

    • Search Google Scholar
    • Export Citation
  • Damodaran, S. & Agyare, K.K. (2013): Effect of microbial transglutaminase treatment on thermal stability and pH-solubility of heat-shocked whey protein isolate. Food Hydrocolloids, 30, 1218.

    • Search Google Scholar
    • Export Citation
  • Folk, J.E. (1969): Mechanism of action of guinea pig liver transglutaminase. VI. Order of substrate addition. J. Biol. Chem., 244 (13), 37073713.

    • Search Google Scholar
    • Export Citation
  • Hohenblum, H., Borth, N. & Mattanovich, D. (2003): Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J. Biotechnol, 102, 281290.

    • Search Google Scholar
    • Export Citation
  • Hohenblum, H., Gasser, B., Maurer, M., Borth, N. & Mattanovich, D. (2004): Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol. Bioeng., 85, 367375.

    • Search Google Scholar
    • Export Citation
  • Li, H., Zhang, L., Cui, Y., Luo, X., Xue, C. & Wang, S. (2013): Expression of soluble recombinant transglutaminase form Zea mays in Pichia pastoris. World J. Microb. Biot., 29 (5), 939947.

    • Search Google Scholar
    • Export Citation
  • Macauley-Patrick, S., Fazenda, M.L., McNeil, B. & Harvey, L.M. (2005): Heterologous protein production using the Pichia pastoris expression system. Yeast, 22, 249270.

    • Search Google Scholar
    • Export Citation
  • McGrew, J.T., Leiske, D., Dell, B., Klinke, R., Krasts, D., Wee, S.F., Abbott, N., Armitage, R. & Harrington, K. (1997): Expression of trimeric CD40 ligand in Pichia pastoris: Use of a rapid method to detect high-level expressing transformants. Gene, 187, 193200.

    • Search Google Scholar
    • Export Citation
  • Norden, K., Agemark, M., Danielson, J.A., Alexandersson, E., Kjellbom, P. & Johanson, U. (2011): Increasing gene dosage greatly enhances recombinant expression of aqua porins in Pichia pastoris. BMC Biotechnol., 11 (47), 112.

    • Search Google Scholar
    • Export Citation
  • Rossa, N. P., Burin, V.M. & Bordignon-Luiz, M.T. (2012): Effect of microbial transgutaminase on functional and rheological properties of ice cream with different fat contents. LWT — Food Sci. Technol., 48, 224230.

    • Search Google Scholar
    • Export Citation
  • Salis, B., Spinetti, G., Scaramuzza, S., Bossi, M., Jotti, G.S., Tonon, G., Crobu, D. & Schrepfer, R. (2015): High-level expression of a recombinant active microbial transglutaminase in Escherichia coli. BMC Biotechnol., 15 (84), 111.

    • Search Google Scholar
    • Export Citation
  • Seravalli, E.A.G. Iguti, A.M., Santana, I.A. & Filho, F.F. (2011): Effects of application of transglutaminase in wheat proteins during the production of bread. Proc. Food Sci., 1, 935942.

    • Search Google Scholar
    • Export Citation
  • Shen, Q., Wu, M., Wang, H.B., Naranmandura, H. & Chen, S.Q. (2012): The effect of gene copy number and co- expression of chaperone on production of albumin fusion proteins in Pichia pastoris. Appl. Microbiol. Biot., 96, 763772.

    • Search Google Scholar
    • Export Citation
  • Sommer, C., Hertel, T.C., Schmelzer, C.E.H. & Pietzsch, M. (2012): Investigations on the activation of recombinant microbial pro-transglutaminase: in contrast to proteinase K, dispase removes the histidine-taq. Amino Acids, 42, 9971006.

    • Search Google Scholar
    • Export Citation
  • Sommer, C., Volk, N. & Pietzsch, M. (2011): Model based optimization of the fed-batch production of a highly active transglutaminase variant in Escherichia coli. Protein Expres. Purif., 77, 919.

    • Search Google Scholar
    • Export Citation
  • Uresti, R.M., Tellez-Luis, S.J., Ramirez, J.A. & Vazquez, M. (2004): Use of dairy proteins and microbial transglutaminase to obtain low-salt fish products from filleting waste from silver carp (Hypophthalmichthys molitrix). Food Chem., 86, 257262.

    • Search Google Scholar
    • Export Citation
  • Vassileva, A., Chugh, D.A., Swaminathan, S. & Khanna, N. (2001): Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Expres. Purif., 21, 7180.

    • Search Google Scholar
    • Export Citation
  • Yurimoto, H., Yamane, M., Kikuchi, Y., Matsu, H., Kato, N. & Sakai, Y. (2004): The pro-peptide of Streptomyces mobaraensis transglutaminase functions in cis and in trans to mediate efficient secretion of active enzyme from methylotrophic yeasts. Biosci. Biotech. Bioch., 68 (10), 20582069.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 2 0 0
Aug 2021 7 0 0
Sep 2021 3 0 0
Oct 2021 4 0 0
Nov 2021 7 0 0
Dec 2021 3 1 0