Authors:
C.H. Li College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, P.R. China
Chinese-Hungarian Cooperative Research Centre for Food Science, Southwest University, Chongqing 400715, P.R. China

Search for other papers by C.H. Li in
Current site
Google Scholar
PubMed
Close
,
M.Y. Du Chinese-Hungarian Cooperative Research Centre for Food Science, Southwest University, Chongqing 400715, P.R. China
College of Food Science, Southwest University, Chongqing 400715, P.R. China

Search for other papers by M.Y. Du in
Current site
Google Scholar
PubMed
Close
, and
K.T. Wang College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, P.R. China
Chinese-Hungarian Cooperative Research Centre for Food Science, Southwest University, Chongqing 400715, P.R. China
College of Food Science, Southwest University, Chongqing 400715, P.R. China

Search for other papers by K.T. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

This study was conducted to assess the effects of 2,4-epibrassionolide (EBR) on mold decay caused by Rhizopus stolonifer and its capability to activate biochemical defense reactions in postharvest peaches. The treatment of EBR at 5 μM possessed the optimum effectiveness on inhibiting the Rhizopus rot in peach fruit among all treatments. The EBR treatment significantly up-regulated the expression levels of a set of defense-related enzymes and PR genes that included PpCHI, PpGns1, PpPAL, PpNPR1, PpPR1 and PpPR4 as well as led to an enhancement for biosynthesis of phenolics and lignins in peaches during the incubation at 20 °C. Interestingly, the EBR-treated peaches exhibited more striking expressions of PR genes and accumulation of antifungal compounds upon inoculation with the pathogen, indicating a priming defense could be activated by EBR. On the other hand, 5 μM EBR exhibited direct toxicity on fungal proliferation of R. stolonifer in vitro. Thus, we concluded that 5 μM EBR inhibited the Rhizopus rot in peach fruit probably by a direct inhibitory effect on pathogen growth and an indirect induction of a priming resistance. These findings provided a potential alternative for control of fungal infection in peaches during the postharvest storage.

Supplementary Materials

    • Supplementary Material
  • Albrecht. C., Boutrot, F., Segonzac. C., Schwessinger. B., Gimenez-Ibanez. S., … & Zipfel. C. (2012): Brassinosteroids inhibit pathogen-associated molecular pattem-tnggered immune signaling independent of the receptor kinase BAK1. Proc. Natl. Acad. Sci. USA, 109, 303-308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali S.S., Kumar, G.B., Khan, M. & Doohan, F.M. (2013): Brassinosteroid enliances resistance to fiisarium diseases of barley. Phytopathology, 103, 1260-1267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assis, J.S., Maldonado. R., Munoz, T., Escribano. M.I. & Merodio, C. (2001): Effect of high caibon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit. Postharvest Biol. Tec., 23, 33-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aubert, C. & Chalot, G. (2020): Physicochemical characteristics, vitamin C, and polyphenohc composition of four European commercial blood-flesh peach cultivars (Prunus persica L. Batsch). J. Food Compos. Anal, S6, 103337-103347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrath, U., Beckers. G.J.M, Langenbach, C.J.G. & Jaskiewicz, M R. (2015): Priming for enhanced defense. Annu. Rev. Phytopathol., 53, 97-119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filek, M., Seeprawska. A., Oklestkowa, J., Ruekdlphi-Skorska E., Biesaga-Koscielniak. J.,… & Janeczko. A. (2018): 2,4-Epibrassinolide as a modifier of antioxidant activities and membrane properties of wheat cells in zearalenone stress conditions. J. Plant Growth Regul., 37, 1085-1098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruszka, D. (2013): The brassinosteroid signaling pathway — New key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int. J. Mol. Sci., 14, 8740-8774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khripach. V., Zhabikskh. V. & Groot. A.D. (2000): Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot., S6, 441-447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinkema. M, Fan, W.H. & Dong, X.N. (2000): Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell, 12, 2339-2350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., Wang, J., Ji, N., Lel C., Zhou, D., … & Wang, K. (2020): PpHOS1, a RING E3 ubiquitin ligase, interacts with PpWRKY22 in the BABA-induced priming defence of peach fruit against Rhizopus stolonifer. Postharvest Biol. Tec., 159, 111029-111037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., Xi, Z., Gao. J., Meng. Y, Lin, S. & Zhang, Z. (2016): Effects of exogenous 24-epibrassinolide to control grey mould and maintain postharvest quality of table grapes. Int. J. Food Sci. Tech., 51, 1236-1243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livak, K.J. & Schmittgen, T.D. (2001): Analysis of relative gene expression data using real-time quantitative PGR and the 2-∆∆CT method. Methods, 25, 402-408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandal, S. (2010): Induction of phenolics, lignin and key defence enzymes in eggplant (Solamim melongena L.) roots in response to elicitors. Afr. J. Biotechnol., 9, 8038-8047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maor, R. & Shirasu. K. (2005): The amis race continues: battle strategies between plants and fungal pathogens. Curr. Opm. Microbiol., 8, 399-404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauch, f., Mauch-Mani, B. & Boller. T. (1988): Antifungal hydrolase in pea tissue: II. Inhibition of fungal growth by combination of chitinase and β-1,3-glucanase. Plant Physiol., 88 ,936-942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakashtia, H., Yasuda, M., Nitta. T., Asaml, T., Fujioka, S.…& Yoshida, S. (2003): Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J., S3 ,887-898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanazzi, G., Sanzani, S.M., Bi, Y., Tian, S.P., Martinez. PG. & Alkan, N. (2016): Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Tec., 122 ,82-94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, PE. (2006): The development of commercial disease control. Plant Pathol., 55, 585-594.

  • Ryals, J.A., Neuenschwander. U.H., Willits, M.G., Molina, A., Steiner, H.Y. & Hunt, M.D. (1996): Systemic acquired resistance. Plant Cell, 124, 1809-1819.

    • Search Google Scholar
    • Export Citation
  • Slinkard, K., & Singleton, V.L.. (1977): Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticult., 28, 49-55.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Cao, S., Di. Y., Liao, Y. & Zheng. Y. (2015): Effect of ethanol treatment on disease resistance against anthracnose rot in postharvest loquat fruit. Sci. Hortic., 188, 115-121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., Liao, Y., Xiong, Q., Kai, J., Cao, S. & Zheng, Y (2016): Induction of direct or priming resistance against Botrytis cinerea in strawberries by β-aminobutyric acid and their effects on sucrose metabolism J. Agr. Food Chem., 64, 5855-5865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., Wu, D., Guo, D. & Du, M. (2019): β-aminobutyric acid induces disease resistance against Botiytis cinerea in grape berries by a cellular priming mechanism. Acta Alimentaria, 48, 177-186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., Xia, X., Yu, G., Wang, J., Wu, J., … & Yu, J. (2015): Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci. Rep.-UK, 5, 9018-9024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., Cao, J., Wang, Q. & Jiang, W. (2008): Postharvest infiltration of BTH reduces infection of mango fruits (Mangifera indica L. cv. Tainong) by Colletotiichum gloeosporioides and enhances resistance inducing compounds. J. Phytopathol., 156, 68-74.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE.

 

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 112 0 0
May 2024 19 0 0
Jun 2024 36 0 0
Jul 2024 18 0 0
Aug 2024 34 0 0
Sep 2024 25 0 0
Oct 2024 0 0 0