View More View Less
  • 1 Laboratory of Bioengineering, Faculty of Biological and Environmental Sciences, CEP 79.804-970, Dourados – MS, Brazil
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Microalgae are promising alternatives to sequestration of carbon and reduction of environmental problems, e.g. the greenhouse effect and industrial water pollution. Depending on the growth conditions, microalgae can differ in their metabolism products, leading them to grow at different rates. Intracellular reactions and nutritional requirements from cell metabolism, as well as biomass composition, may vary in function of the temperature. In this study, the biotechnological potential of three microalgae strains from the species was evaluated in terms of growth, biomass composition, fatty acid profile, and chlorophyll and carotenoids contents. Each of the three species demonstrated different potential depending on their metabolisms: Scenedesmus spinosus presented fastest growth and had the highest protein content (52.99%), Pseudokirchneriella subcapitata presented the highest content of lipid extracted (26.51%), and Scenedesmus acuminatus showed increased production of chlorophyll (5.25 mg l–1) and carotenoid (1.02 mg l–1) pigments.

  • Adeyemi, N.A., Mohiuddin, A.K.M. & Jameel, A.T. (2011): Biodiesel production: a mini review. Int. Energ. J., 12, 15-28.

  • AOAC (2000): Association of Official Analytical Chemists . Washington, DC, USA.

  • AOCS (2005): Official procedure. Approved procedure Ce 1-62 - Fatty acid composition by gas chro?natography. American Oil Chemists Society.

    • Search Google Scholar
    • Export Citation
  • Bligh, E.G. & Dyer, J.W. (1959): A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys., 37, 911-917.

  • Coělho, D.F., Tundisi , L.L., Cerqueira, K.S., Rodrigues, J.R.S. , Mazzola, P.G., Tambourgi, E.B. & Souza, R.R. (2019): Microalgae: Cultivation aspects and bioactive confounds. Braz. Arch. Biol. Techn., 62, e19180343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhup, S., Kannank, D.C. & Dhawan, V. (2016): Understanding urea assimilation and its effect on lipid production and fatty- acid composition of Scenedesmus sp. SOJ Biochem., 2, 1-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González-Garcinuño, A., Tabernero, A., Sánches-Álavrez, J.M., Del Valle, E.M.M. & Galán, M.A. (2014): Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea. Bioresour. Technol., 173, 334-341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harun, R., Singh, M., Forde, G.M & Dakquahd, M.K. (2010): Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energ. Rev., 14, 1037-1047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, B., West, J.A. & Koulman, A. (2015): A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules, 20, 2425-2444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiss, B. & Németh, A. (2019): High-throughput microalgae cultivation with adjustable led-module applying different colours for Nannochloropsis and Chloj-ella microcultures. Acta Alimentaria, 48, 115-124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y. & Shen, H. (2004): Basic culturing techniques, -in: Richmond, A (Ed.) Handbook of microalgal culture: Biotechnology and applied phycology . Blackwell Publishing 1, pp. 40-56.

    • Search Google Scholar
    • Export Citation
  • Lichtenthaler, H.K. & Wellburn, A.R. (1983): Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc. T., 11, 591-592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minillo, A. Godoy, H.C. & Fonseca, G.G. (2013): Growth performance of microalgae exposed to Co2. J. Clean Energ. Technol., 2, 110-114.

  • Musharraf, S.G., Ahamed, A.M., Zehra, N., Kabir, N., Choudhary, MI. & Rahmas, A. (2012): Biodiesel production from microalgal isolates of southern Pakistan and quantification of FAMEs by GC-MS/MS analysis. Chem. Cent. J., 6, 1-10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, A.S., Druzin, J.N., … & Nascimento, M.A. (2013): Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenerg. Res., 6, 1-13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereira, CMP., Hobuss, C.B., Maciel, J.V., Ferreira, L.R., Pino, F.B.D. & Mesko, M.F. (2012): Biodiesel derived from microalgae: advances and perspectives. Quím. Nova, 35, 2013-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rai, M.P. & Gupta, S. (2017): Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedesmus abundans. Energ. Convers. Manage., 141, 85-92.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rezanka, T. & Sigler, K. (2009): Odd-nunibered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Progr. Lipid Res., 48, 206-238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribeiro, D.M., Zanetti, G.T., Juliao, M.H.M., Masetto, T.E., Gelinski, J.M.L.N. & Fonseca, G.G. (2019): Effect of different culture media on growth of Chlorella sorokiniana and the influence of microalgal effluents on the germination of lettuce seeds. JABB., 7, 6-10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sipaúba-Tavares, L.H., Pelicioni, L.C. & Oliveira, A. (1999): Use of inorganic (NPK) and the CHU12 medium for cultivation of Ankistrodesmus gracilis in laboratory. Braz. J. Ecol., 1, 10-15.

    • Search Google Scholar
    • Export Citation
  • Soto, P., Gaete, H. & Hidalgo, M.H. (2011): Assessment of catalase activity, lipid peroxidation chlorophyll-a. and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat. Am. J. Aquat. Res., 39, 280-285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stansell, G.R., Gray, V.M. & Sym, S.D. (2012): Microalgal fatty acid composition: implications for biodiesel quality. J. Appl. Phycol, 24, 791-801.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 531 123
Jul 2020 44 12 1
Aug 2020 80 2 2
Sep 2020 25 6 6
Oct 2020 45 2 2
Nov 2020 20 3 3
Dec 2020 0 0 0