The aim of this work was to evaluate the antioxidant and antibacterial activities of two marine algae, Cystoseira mediterranea and Padina pavonica, extracts. Total phenols (TPC), carotenoids, and phlorotannins contents of the extracts obtained by four extraction solvents were determined and compared. The highest TPC content was observed for aqueous extract of C. mediterranea with 37.09±0.46 mg GAE/g DE followed by ethanol extract of P. pavonica (24.28 ±0.99 mg GAE/g DE), which showed the highest phlorotannins content (1.18±0.18 mg PE/g DE), while its methanol extract held carotenoids content of 66.96 ±4.78 μg g–1 DE. Ethanol extract of C. mediterranea exhibited the best antioxidant activity with an EC50 of 58.3 ±1.16 μg ml . The antibacterial activity screening against MRSA and E. coli showed that ethanol extract of C. mediterranea towards a Methicillin resistant Staphyloccocus aureus (20.33±0.28 mm) and E. coli (15.66±0.57 mm) was more efficient with MICs about 80 mg ml–1 and 20 mg ml–1, respectively. Ethanol extract of C. mediterranea seems to have the highest potential for use in food industries.
Boisvert, C., Beaulieu, L., Bonnet, C. & Pelletier, É. (2015): Assessment of the antioxidant and antibacterial activities of three species of edible seaweeds. J. Food Biochem., 39(4), 377–387.
Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995): Use of a free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol., 28(1), 25–30.
Calliste, C.-A., Trouillas, P., Allais, D.-P., Simon, A. & Duroux, J.-L. (2001): Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants. J. Agr. Food Chem., 49, 3321–3327.
Cmo, S., Kanu, S., Cmo, J., Kim, A., Park, S., & Amn, D.-H. (2007): The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J. Med. Food, 10(3), 479–485.
Conde, E., Balboa, E.M., Parada, M. & Falqus, E. (2013): Algal proteins, peptides and amino acids.-in: Domínuuez, H. (Ed.) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing. pp. 135–180.
Connan, S., Deslandes, E. & Gall, E.A. (2007): Influence of day–night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds. J. Exp. Mar. Biol. Ecol., 349(2), 359–369.
Cox, S., Abu-Gmannam, N. & Gupta, S. (2010): An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J., 17, 205–220.
Eom, S.-H., Kim, Y.-M. & Kim, S.-K. (2012): Antimicrobial effect of phlorotannins from marine brown algae. Food Chem. Toxicol., 50, 3251–3255
Farid, Y., Etamiri, S. & Assobmei, O. (2009): Activité antimicrobienne des algues marines de la lagune d’Oualidia (Maroc) : Criblage et optimisation de la période de la récolte. J. Appl. Biosci., 24, 1543–1552.
Gilbert-López, B., Barranco, A., Herrero, M., Ciruentes, A. & Ibáñez, E. (2017): Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int., 99, 1056–1065.
Haq, S.H., Al-Ruyaismed, G., Al-Mutlaq, M.A., Naji, S.A., Al-Mouren, M., & Al-Mussallam, A. (2019): Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci. Rep., 9(1), 1–7.
Jacobsen, C., Sørensen, A.-D.M., Holdt, S.L., Akom, C.C. & Hermund, D.B. (2019): Source, extraction, characterization, and applications of novel antioxidants from seaweed. Annu. Rev. Food Sci. T., 10, 541–568.
Koivikko, R., Loponen, J., Honkanen, T. & Jormalainen, V. (2005): Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol., 31(1), 195–212.
Noda, H., Amano, H., Arasmima, K. & Nisizaya, K. (1990): Antitumor activity of marine algae. Hydrobiologia, 204(1), 577–584.
O’Sullivan, A.M., O’Callauman, Y.C., O’Grady, M.N., Queuuineur, B., Hannirry, D., & O’Brien, N.M. (2011): In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem., 126, 1064–1070.
Psrez, M.J., Falqus, E. & Domínuuez, H. (2016): Antimicrobial action of compounds from marine seaweed. Mar. Drugs, 14(3), 52. 38 pages.
Reicmelt, J.L. & Boroyitzka, M.A. (1984): Antimicrobial activity from marine algae Results of a large-scale screening programme. Hydrobiologia, 116(1), 158–168.
Santoyo, S., Rodríuuez-Meizoso, I., Ciruentes, A., Jaime, L., García-Blairsy Reina, G., & Ibáñez, E. (2009): Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT–Food Sci. Technol., 42, 1213–1218.
Sinum, I.P. & Sidana, J. (2013): 5–Phlorotannins.-in: Domínuuez, H. (Ed.) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing. pp. 181–204.
Škeruet, M., Kotnik, P., Hadolin, M., Hra¿, A.R., Simoniš, M. & Knez, Ž. (2005): Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem., 89(2), 191–198.
Soares, A.R., Robaina, M.C.S., Mendes, G.S., Silva, T.S.L., Gestinari, L.M.S., & Romanos, M.T.V. (2012): Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus. Rev. Bras. Farmacogn., 22(4), 714–723.
Stern, J.L., Hauerman, A.E., Steinberu, P.D. & Mason, P.K. (1996): Phlorotannin-protein interactions. J. Chem. Ecol., 22(10), 1877–1899.
Zhang, X. & Tmomsen, M. (2019): Biomolecular composition and revenue explained by interactions between extrinsic factors and endogenous rhythms of Saccharina latissima. Mar. Drugs, 17(2), 107.