View More View Less
  • 1 Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

The aim of this work was to evaluate the antioxidant and antibacterial activities of two marine algae, Cystoseira mediterranea and Padina pavonica, extracts. Total phenols (TPC), carotenoids, and phlorotannins contents of the extracts obtained by four extraction solvents were determined and compared. The highest TPC content was observed for aqueous extract of C. mediterranea with 37.09±0.46 mg GAE/g DE followed by ethanol extract of P. pavonica (24.28 ±0.99 mg GAE/g DE), which showed the highest phlorotannins content (1.18±0.18 mg PE/g DE), while its methanol extract held carotenoids content of 66.96 ±4.78 μg g–1 DE. Ethanol extract of C. mediterranea exhibited the best antioxidant activity with an EC50 of 58.3 ±1.16 μg ml . The antibacterial activity screening against MRSA and E. coli showed that ethanol extract of C. mediterranea towards a Methicillin resistant Staphyloccocus aureus (20.33±0.28 mm) and E. coli (15.66±0.57 mm) was more efficient with MICs about 80 mg ml–1 and 20 mg ml–1, respectively. Ethanol extract of C. mediterranea seems to have the highest potential for use in food industries.

  • Boisvert, C., Beaulieu, L., Bonnet, C. & Pelletier, É. (2015): Assessment of the antioxidant and antibacterial activities of three species of edible seaweeds. J. Food Biochem., 39(4), 377387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995): Use of a free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol., 28(1), 2530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calliste, C.-A., Trouillas, P., Allais, D.-P., Simon, A. & Duroux, J.-L. (2001): Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants. J. Agr. Food Chem., 49, 33213327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cmo, S., Kanu, S., Cmo, J., Kim, A., Park, S., & Amn, D.-H. (2007): The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J. Med. Food, 10(3), 479485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conde, E., Balboa, E.M., Parada, M. & Falqus, E. (2013): Algal proteins, peptides and amino acids.-in: Domínuuez, H. (Ed.) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing. pp. 135180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connan, S., Deslandes, E. & Gall, E.A. (2007): Influence of day–night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds. J. Exp. Mar. Biol. Ecol., 349(2), 359369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, S., Abu-Gmannam, N. & Gupta, S. (2010): An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J., 17, 205220.

    • Search Google Scholar
    • Export Citation
  • Eom, S.-H., Kim, Y.-M. & Kim, S.-K. (2012): Antimicrobial effect of phlorotannins from marine brown algae. Food Chem. Toxicol., 50, 32513255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farid, Y., Etamiri, S. & Assobmei, O. (2009): Activité antimicrobienne des algues marines de la lagune d’Oualidia (Maroc) : Criblage et optimisation de la période de la récolte. J. Appl. Biosci., 24, 15431552.

    • Search Google Scholar
    • Export Citation
  • Gilbert-López, B., Barranco, A., Herrero, M., Ciruentes, A. & Ibáñez, E. (2017): Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int., 99, 10561065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haq, S.H., Al-Ruyaismed, G., Al-Mutlaq, M.A., Naji, S.A., Al-Mouren, M., & Al-Mussallam, A. (2019): Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci. Rep., 9(1), 17.

    • Search Google Scholar
    • Export Citation
  • Jacobsen, C., Sørensen, A.-D.M., Holdt, S.L., Akom, C.C. & Hermund, D.B. (2019): Source, extraction, characterization, and applications of novel antioxidants from seaweed. Annu. Rev. Food Sci. T., 10, 541568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koivikko, R., Loponen, J., Honkanen, T. & Jormalainen, V. (2005): Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol., 31(1), 195212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noda, H., Amano, H., Arasmima, K. & Nisizaya, K. (1990): Antitumor activity of marine algae. Hydrobiologia, 204(1), 577584.

  • O’Sullivan, A.M., O’Callauman, Y.C., O’Grady, M.N., Queuuineur, B., Hannirry, D., & O’Brien, N.M. (2011): In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem., 126, 10641070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Psrez, M.J., Falqus, E. & Domínuuez, H. (2016): Antimicrobial action of compounds from marine seaweed. Mar. Drugs, 14(3), 52. 38 pages.

    • Search Google Scholar
    • Export Citation
  • Reicmelt, J.L. & Boroyitzka, M.A. (1984): Antimicrobial activity from marine algae Results of a large-scale screening programme. Hydrobiologia, 116(1), 158168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoyo, S., Rodríuuez-Meizoso, I., Ciruentes, A., Jaime, L., García-Blairsy Reina, G., & Ibáñez, E. (2009): Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT–Food Sci. Technol., 42, 12131218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinum, I.P. & Sidana, J. (2013): 5–Phlorotannins.-in: Domínuuez, H. (Ed.) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing. pp. 181204.

    • Search Google Scholar
    • Export Citation
  • Škeruet, M., Kotnik, P., Hadolin, M., Hra¿, A.R., Simoniš, M. & Knez, Ž. (2005): Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem., 89(2), 191198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares, A.R., Robaina, M.C.S., Mendes, G.S., Silva, T.S.L., Gestinari, L.M.S., & Romanos, M.T.V. (2012): Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus. Rev. Bras. Farmacogn., 22(4), 714723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, J.L., Hauerman, A.E., Steinberu, P.D. & Mason, P.K. (1996): Phlorotannin-protein interactions. J. Chem. Ecol., 22(10), 18771899.

  • Zhang, X. & Tmomsen, M. (2019): Biomolecular composition and revenue explained by interactions between extrinsic factors and endogenous rhythms of Saccharina latissima. Mar. Drugs, 17(2), 107.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 120 32 10
Dec 2020 62 2 3
Jan 2021 78 2 1
Feb 2021 67 1 1
Mar 2021 0 0 0