View More View Less
  • a Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05000, Batna, Algeria
  • | b Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), 21934 Borg El-Arab, Alexandria, Egypt
  • | c ADAFSA, Research and Development Division, Al Ain, UAE
  • | d Laboratory of Environment and Animal Health and Productions (EAHP), Veterinary and Agronomic Sciences Institute, University of Batna 1, 05000, Batna, Algeria
  • | e Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application (SRTA-City), 21934 Borg El-Arab, Alexandria, Egypt
  • | f Department of Veterinary Sciences, of Veterinary and Agronomic Sciences Institute, University of Batna 1, 05000, Batna, Algeria
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

This study describes the antistaphylococcal mechanism of the ethanolic extract of Algerian propolis on Staphylococcus aureus ATCC 25923. To investigate the underlying mechanism of action of the ethanolic extract of propolis, bacteriolysis, bacterial death, leakage of potassium, proteins, nucleic components, and scanning electron microscopic studies were conducted. The results showed that the minimum inhibitory concentration (MIC) of ethanolic extract of propolis against Staphylococcus aureus ATCC 25923 was 39 μg ml–1. The extract displayed significant bactericid activity against S. aureus in a time and concentration dependant manner. Its mode of action was evident from the increase of K+ efflux and nucleotide leakage. These results were confirmed by Scanning Electron Microscopy (SEM) that showed remarkable morphological and ultrastructural changes in S. aureus after exposure to 1MIC and 2MIC concentrations. The overall study contributed to the understanding of the antistaphylococcal mechanism of ethanolic extract of propolis. It emphasizes its potential to be used as an important natural bio-preservatives in food products.

  • Akinpelu, D.A., Alayande, K.A., Aiyeuoro, O.A., Akinpelu, O.F. & Okom, A.I. (2015): Probable mechanisms of biocidal action of Cocos nucifera Husk extract and fractions on bacteria isolates. BMC Complem. Altern. M., 15:116, 19.

    • Search Google Scholar
    • Export Citation
  • Akinpelu, D.A., Odeyade, J.O., Aiyeuoro, O.A., Asmara, A.O.T., Akinpelu, O.F. & Auunbiade, M.O. (2016): Biocidal effects of stem bark extract of Chrysophyllum albidium g. don on vancomycin-resistant Staphylococcus aureus. BMC Complem. Altern. M., 16:105, 19.

    • Search Google Scholar
    • Export Citation
  • Benmaniria, M., Smimomura, K., Tsucmiya, I., Inui, S., Kumazaya, S., & Benbarek, H. (2014): Chemical composition and antimicrobial activity of propolis collected from some localities of Western Algeria. Acta Alimentaria, 43, 482488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borues, A., Ferreira, C., Saavedra, M.J. & Simões, M. (2013): Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist., 19, 256265.

    • Search Google Scholar
    • Export Citation
  • Carson, C.F., Mee, B.J. & Riley, T.V (2002): Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Ch., 46, 19141920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cusmnie, T.P.T. & Lamb, A.J. (2005): Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. J. Ethnopharmacol., 101, 243248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El-Guendouz, S., Aazza, S., Lyoussi, B., Bankova, V., Popova, M., … Miuuel, G. (2018): Moroccan propolis: A natural antioxidant, antibacterial, and antibiofilm against Staphylococcus aureus with no induction of resistance after continuous exposure. Evid.-Based Compl. Alt., 2018, Article ID 9759240, 19 pages.

    • Search Google Scholar
    • Export Citation
  • El-Somaimy, S. & Masry, S. (2014): Phenolic content, antioxidant and antimicrobial activities of Egyptian and Chinese propolis. Am.-Eurasian J. Agr. Environ. Sci., 14, 11161124.

    • Search Google Scholar
    • Export Citation
  • Grecka, K., Kus, P.M., Okinczyc, P., Worobo, R.W., Walkusz, J. & Szyeda, P. (2019): The anti-staphylococcal potential of ethanolic Polish propolis extracts. Molecules, 24, 124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iresan, B.O.T., Joycmarat, N. & Voravutmikuncmai, S.P. (2009): The mode of antistaphylococcal action of Eleutherine americana. FEMS Immunol. Med. Microbiol., 57, 193201.

    • Search Google Scholar
    • Export Citation
  • Koutsoumanis, K.P. & Soros, J.N. (2004): Comparative acid stress response of Listeria monocytogenes, Escherichia coli O157 :H7, and Salmonella typhimurium after habituation at different pH conditions. Lett. Appl. Microbiol., 38, 321326.

    • Search Google Scholar
    • Export Citation
  • May, J., Cman, C.H., Kinu, A., Williams, L. & Frencm, G.L. (2000): Time-kill studies of tea tree oils on clinical isolates. J. Antimicrob. Chemoth., 45, 639643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirzoeva, O.K., Grismanin, R.N. & Calder, P.C. (1997): Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiol. Res., 152, 239246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Momdaly, A.A.A., Mammoud, A.A., Roby, M.H.H., Smetanska, I. & Ramadan, M.F. (2015): Phenolic extract from propolis and bee pollen: Composition, antioxidant and antibacterial activities. J. Food Biochem., 39, 538547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, D.M., Melo, F.G., Balouun, S.O., Flacm, A., De Souza, E.C.A., & De Oliveira Martins, D.T. (2015): Antibacterial mode of action of the hydroethanolic extract of Leonotis nepetifolia (L.) R. Br. Involves bacterial membrane perturbations. J. Ethnopharmacol., 172, 356363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedonese, F., Verani, G., Torracca, B., Turcmi, B., Felicioli, A. & Nuvoloni, R. (2019): Effect of an Italian propolis on the growth of Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus in milk and whey cheese. Ital. J. Food Saf., 8, 218222.

    • Search Google Scholar
    • Export Citation
  • Popova, M., Giannopoulou, E., Skalicka-yozniak, K., Graikou, K., Widelski, J., & Cminou, I. (2017): Characterization and biological evaluation of propolis from Poland. Molecules, 22, 1159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ríos, J.L. & Recio, M.C. (2005): Medicinal plants and antimicrobial activity. J. Ethnopharmacol., 100, 8084.

  • Saritma, K., Rajesm, A., Manjulatma, K., Setty, O.H. & Yenuuu, S. (2015): Mechanism of antibacterial action of the alcoholic extracts of Hemidesmus indicus (l.) R. Br. ex Schult, Leucas aspera (wild.), Plumbago zeylanica L., and Tridax procumbens (L.) R. Br. ex Schult. Front. Microbiol., 6, 19.

    • Search Google Scholar
    • Export Citation
  • Seuueni, N., Zellauui, A., Moussaoui, F., Lamouel, M. & Rmouati, S. (2014): Antibacterial activity of two Algerian propolis. IJPSRR, 25(1), 106110.

    • Search Google Scholar
    • Export Citation
  • Seuueni, N., Zellauui, A., Moussaoui, F., Lamouel, M. & Rmouati, S. (2016): Flavonoids from Algerian propolis. Arab. J. Chem., 9, s425–s428.

    • Search Google Scholar
    • Export Citation
  • Soltani, E., Cerezuela, R., Cmarer, N., Mezaacme-Aicmour, S., Esteban, M.A. & Zerrouu, M.M. (2017): Algerian propolis extracts: chemical composition, bactericidal activity and in vitro effects on gilthead seabream innate immune responses. Fish Shellfish Immun., 62, 5767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suriyatem, R., Auras, R.A., Racmtanapun, C. & Racmtanapun, P. (2018): Biodegradable rice starch/carboxymethyl chitosan films with added propolis extract for potential use as active food packaging. Polymers - Basel, 10, 954.

    • Search Google Scholar
    • Export Citation
  • Tyaui, P., Sinum, M., Kumari, H., Kumari, A. & Mukmopadmyay, K. (2015): Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. Plos One, 10, 115.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., Iandolo, J.J. & Steyart, G.C. (1998): The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol. Lett., 168, 227233.

    • Crossref
    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 51 1 1
Mar 2021 35 1 1
Apr 2021 35 1 1
May 2021 32 0 0
Jun 2021 81 0 0
Jul 2021 24 0 0
Aug 2021 0 0 0