View More View Less
  • 1 Manavgat Vocational School, Akdeniz University, Antalya, Turkey
  • | 2 Çal Vocational School, Pamukkale University, Denizli, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Abstract

Tomato (Solanum lycopersicum L.) is one of the important vegetables in the world due to large production area and consumer interest. Biotic and abiotic stresses have negative effect on tomato production. Utilisation of rootstocks conferring resistance to biotic stresses can be considered as the most effective and environment friendly solution in tomato production to overcome this problem. Although wild tomato species is a good rootstock candidate due to its resistance to multiple plant diseases, effects of wild tomato species as rootstock on mineral nutrient composition and fruit quality are not clear. In the present study, effects of interspecific hybrids derived from two wild tomato species (Solanum habrochaites and Solanum penellii) as rootstock on tomato fruit mineral nutrient composition (phosphor (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)) and fruit quality traits (soluble solids content (SSC), pH, percent titratable acidity (TA), and lycopene content) were evaluated. In the study, Amaron, Armstrong, and Arazi commercial rootstocks were used as control and AK0004 F1 (candidate tomato hybrid) was used as a source of scion. As result, only lycopene content was affected by different rootstocks. S. penellii was found to be with more potential for lycopene content. For mineral nutrient composition, all hybrids and controls had similar contents of potassium, phosphor, calcium, and magnesium. Manganese and copper contents decreased in all plants. S. habrochaites had more potential regarding nitrogen, iron, and zinc contens than S. penellii. This is the first study to evaluate two interspecific hybrids derived from S. habrochaites and S. penellii, and the results might be useful to understand effects of rootstocks derived from wild tomato species on mineral nutrient content and fruit quality.

  • Ashita, E. (1927). Grafting of watermelons (in Japanese). Korea (Chosun) Agricultural Newsletter, 1: 9.

  • Bletsos, F.A. (2006). Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production. Scientia Horticulturae, 107(4): 325331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A., and Rea, E. (2006). Yield, fruit, quality and mineral composition of grafted melon plants grown under saline conditions. Journal of Horticultural Science and Biotechnology, 81(1): 146152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djidonou, D., Simonne, A.H., Koch, K.E., Brecht, J.K., and Zhao, X. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortScience, 51(12): 16181624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djidonou, D., Zhao, X., Brecht, J.K., and Cordasco, K.M. (2017). Influence of interspecific hybrid rootstocks on tomato growth, nutrient accumulation, yield, and fruit composition under greenhouse conditions. HortTechnology, 27(6): 868877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edelstein, M., Plaut, Z., and Ben-Hur, M. (2011). Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Botany, 62(1): 177184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO (2018). Statistics of Food and Agriculture Organization of the United Nations, Available at: http://www.fao.org/statistics/en/.

  • Fernández-Garcia, N., Martinez, V., Cerda, A., and Carvajal, M. (2004a). Fruit quality of grafted tomato plants grown under saline conditions. The Journal of Horticultural Science and Biotechnology, 79: 9951001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández‐Garcia, N., Martinez, V., and Carvajal, M. (2004b). Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science, 167(5): 616622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fish, W.W., Perkins-Veazie, P., and Collins, J.K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis, 15: 309317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, F.B., Sanchez-Bel, P., Estan, M.T., Martinez-Rodriguez, M.M., Moyano, E., Morales, B., Campos, J.F., Garcia-Abellán, J.O., Egea, M.I., and Bolarín, M.C. (2010). The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 125(3): 211217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kacar, B., and Inal, A. (2008). Bitki analizleri. Nobel Yayinlari, 1241(63): 912 pages (Ankara, In Turkish).

  • Kawaguchi, M., Taji, A., Backhouse, D., and Oda, M. (2008). Anatomy and physiology of graft incompatibility in solanaceous plants. The Journal of Horticultural Science and Biotechnology, 83(5): 581588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnear, P.R. and Gray, C.D. (2010). PASW statistics 17 made simple. Psychology Press, New York, p. 255.

  • King, S.R., Davis, A.R., Zhang, X., and Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2): 106111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.M., Kubota, C., Tsao, S.J., Bie, Z., Echevarria, P.H., Morra, L., and Oda, M. (2010). Current status of vegetable grafting: diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2): 93105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leonardi, C. and Giuffrida, F. (2006). Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. European Journal of Horticultural Science, 71(3): 97101.

    • Search Google Scholar
    • Export Citation
  • Lopez-Perez, J.A., Le Strange, M., Kaloshian, I., and Ploeg, A.T. (2006). Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection, 25(4): 382388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmoud, A.M.A. (2020). Tomato rootstock breeding: evaluation of tomato interspecific hybrid rootstocks under greenhouse conditions. The Horticulture Journal, 89(5): 575585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., Mota-Cadenas, C., and Carvajal, M. (2010). Physiological aspects of rootstock–scion interactions. Scientia Horticulturae, 127(2): 112118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Rodriguez, M.M., Estañ, M.T., Moyano, E., Garcia-Abellan, J.O., Flores, F.B., Campos, J.F., Al-Azzawi, M.J., Flowers, T.J., and Bolarin, M.C. (2008). The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environmental and Experimental Botany, 63(1–3): 392401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oda, M., Nagata, M., Tsuji, K., and Sasaki, H. (1996). Effects of scarlet eggplant rootstock on growth, yield, and sugar content of grafted tomato fruits. Journal of the Japanese Society for Horticultural Science, 65(3): 531536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otani, T. and Seike, N. (2007). Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucumis sativus). Journal of Pesticide Science, 32(3): 235242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivard, C.L. (2006). Grafting tomato to manage soilborne diseases and improve yield in organic production systems .Master's thesis. North Carolina State University, Raleigh, NC. 102 pages.

    • Search Google Scholar
    • Export Citation
  • Rivard, C.L., O'Connell, S., Peet, M.M., and Louws, F.J. (2010). Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Disease, 94(8): 10151021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez‐Rodríguez, E., Leyva, R., Constán‐Aguilar, C., Romero, L., and Ruiz, J.M. (2012). Grafting under water stress in tomato cherry: improving the fruit yield and quality. Annals of Applied Biology, 161(3): 302312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, D., Rouphael, Y., Colla, G., and Venema, J.H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2): 162171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H., Kumar, P., Chaudhari, S., and Edelstein, M. (2017). Tomato grafting: a global perspective. HortScience, 52(10): 13281336.

  • Turhan, A., Ozmen, N., Serbeci, M.S., and Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38(4): 142149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urlić, B., Runjić, M., Mandušić, M., Žanić, K., Vuletin Selak, G., Matešković, A., and Dumičić, G. (2020). Partial root-zone drying and deficit irrigation effect on growth, yield, water use and quality of greenhouse grown grafted tomato. Agronomy, 10(9): 1297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yetisir, H., Caliskan, M.E., Soylu, S., and Sakar, M. (2006). Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria siceraria to flooding. Environmental and Experimental Botany, 58(1–3): 18.

    • Crossref
    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 26 1 2
Aug 2021 28 1 2