Authors:
A. Kabas Manavgat Vocational School, Akdeniz University, Antalya, Turkey

Search for other papers by A. Kabas in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3983-9965
and
I. Celik Çal Vocational School, Pamukkale University, Denizli, Turkey

Search for other papers by I. Celik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tomato (Solanum lycopersicum L.) is one of the important vegetables in the world due to large production area and consumer interest. Biotic and abiotic stresses have negative effect on tomato production. Utilisation of rootstocks conferring resistance to biotic stresses can be considered as the most effective and environment friendly solution in tomato production to overcome this problem. Although wild tomato species is a good rootstock candidate due to its resistance to multiple plant diseases, effects of wild tomato species as rootstock on mineral nutrient composition and fruit quality are not clear. In the present study, effects of interspecific hybrids derived from two wild tomato species (Solanum habrochaites and Solanum penellii) as rootstock on tomato fruit mineral nutrient composition (phosphor (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)) and fruit quality traits (soluble solids content (SSC), pH, percent titratable acidity (TA), and lycopene content) were evaluated. In the study, Amaron, Armstrong, and Arazi commercial rootstocks were used as control and AK0004 F1 (candidate tomato hybrid) was used as a source of scion. As result, only lycopene content was affected by different rootstocks. S. penellii was found to be with more potential for lycopene content. For mineral nutrient composition, all hybrids and controls had similar contents of potassium, phosphor, calcium, and magnesium. Manganese and copper contents decreased in all plants. S. habrochaites had more potential regarding nitrogen, iron, and zinc contens than S. penellii. This is the first study to evaluate two interspecific hybrids derived from S. habrochaites and S. penellii, and the results might be useful to understand effects of rootstocks derived from wild tomato species on mineral nutrient content and fruit quality.

  • Ashita, E. (1927). Grafting of watermelons (in Japanese). Korea (Chosun) Agricultural Newsletter, 1: 9.

  • Bletsos, F.A. (2006). Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production. Scientia Horticulturae, 107(4): 325331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A., and Rea, E. (2006). Yield, fruit, quality and mineral composition of grafted melon plants grown under saline conditions. Journal of Horticultural Science and Biotechnology, 81(1): 146152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djidonou, D., Simonne, A.H., Koch, K.E., Brecht, J.K., and Zhao, X. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortScience, 51(12): 16181624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djidonou, D., Zhao, X., Brecht, J.K., and Cordasco, K.M. (2017). Influence of interspecific hybrid rootstocks on tomato growth, nutrient accumulation, yield, and fruit composition under greenhouse conditions. HortTechnology, 27(6): 868877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edelstein, M., Plaut, Z., and Ben-Hur, M. (2011). Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Botany, 62(1): 177184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO (2018). Statistics of Food and Agriculture Organization of the United Nations, Available at: http://www.fao.org/statistics/en/.

  • Fernández-Garcia, N., Martinez, V., Cerda, A., and Carvajal, M. (2004a). Fruit quality of grafted tomato plants grown under saline conditions. The Journal of Horticultural Science and Biotechnology, 79: 9951001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández‐Garcia, N., Martinez, V., and Carvajal, M. (2004b). Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science, 167(5): 616622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fish, W.W., Perkins-Veazie, P., and Collins, J.K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis, 15: 309317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, F.B., Sanchez-Bel, P., Estan, M.T., Martinez-Rodriguez, M.M., Moyano, E., Morales, B., Campos, J.F., Garcia-Abellán, J.O., Egea, M.I., and Bolarín, M.C. (2010). The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 125(3): 211217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kacar, B., and Inal, A. (2008). Bitki analizleri. Nobel Yayinlari, 1241(63): 912 pages (Ankara, In Turkish).

  • Kawaguchi, M., Taji, A., Backhouse, D., and Oda, M. (2008). Anatomy and physiology of graft incompatibility in solanaceous plants. The Journal of Horticultural Science and Biotechnology, 83(5): 581588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnear, P.R. and Gray, C.D. (2010). PASW statistics 17 made simple. Psychology Press, New York, p. 255.

  • King, S.R., Davis, A.R., Zhang, X., and Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2): 106111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.M., Kubota, C., Tsao, S.J., Bie, Z., Echevarria, P.H., Morra, L., and Oda, M. (2010). Current status of vegetable grafting: diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2): 93105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leonardi, C. and Giuffrida, F. (2006). Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. European Journal of Horticultural Science, 71(3): 97101.

    • Search Google Scholar
    • Export Citation
  • Lopez-Perez, J.A., Le Strange, M., Kaloshian, I., and Ploeg, A.T. (2006). Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection, 25(4): 382388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmoud, A.M.A. (2020). Tomato rootstock breeding: evaluation of tomato interspecific hybrid rootstocks under greenhouse conditions. The Horticulture Journal, 89(5): 575585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., Mota-Cadenas, C., and Carvajal, M. (2010). Physiological aspects of rootstock–scion interactions. Scientia Horticulturae, 127(2): 112118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Rodriguez, M.M., Estañ, M.T., Moyano, E., Garcia-Abellan, J.O., Flores, F.B., Campos, J.F., Al-Azzawi, M.J., Flowers, T.J., and Bolarin, M.C. (2008). The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environmental and Experimental Botany, 63(1–3): 392401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oda, M., Nagata, M., Tsuji, K., and Sasaki, H. (1996). Effects of scarlet eggplant rootstock on growth, yield, and sugar content of grafted tomato fruits. Journal of the Japanese Society for Horticultural Science, 65(3): 531536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otani, T. and Seike, N. (2007). Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucumis sativus). Journal of Pesticide Science, 32(3): 235242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivard, C.L. (2006). Grafting tomato to manage soilborne diseases and improve yield in organic production systems .Master's thesis. North Carolina State University, Raleigh, NC. 102 pages.

    • Search Google Scholar
    • Export Citation
  • Rivard, C.L., O'Connell, S., Peet, M.M., and Louws, F.J. (2010). Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Disease, 94(8): 10151021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez‐Rodríguez, E., Leyva, R., Constán‐Aguilar, C., Romero, L., and Ruiz, J.M. (2012). Grafting under water stress in tomato cherry: improving the fruit yield and quality. Annals of Applied Biology, 161(3): 302312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, D., Rouphael, Y., Colla, G., and Venema, J.H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2): 162171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H., Kumar, P., Chaudhari, S., and Edelstein, M. (2017). Tomato grafting: a global perspective. HortScience, 52(10): 13281336.

  • Turhan, A., Ozmen, N., Serbeci, M.S., and Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38(4): 142149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urlić, B., Runjić, M., Mandušić, M., Žanić, K., Vuletin Selak, G., Matešković, A., and Dumičić, G. (2020). Partial root-zone drying and deficit irrigation effect on growth, yield, water use and quality of greenhouse grown grafted tomato. Agronomy, 10(9): 1297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yetisir, H., Caliskan, M.E., Soylu, S., and Sakar, M. (2006). Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria siceraria to flooding. Environmental and Experimental Botany, 58(1–3): 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 450 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 182 0 0
Nov 2024 73 0 0
Dec 2024 50 0 0
Jan 2025 75 0 0
Feb 2025 94 0 0
Mar 2025 86 0 0
Apr 2025 0 0 0