View More View Less
  • 1 Student Research Committee, Babol University of Medical Sciences, Babol, Iran
  • | 2 Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
  • | 3 Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • | 4 Department of Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
  • | 5 Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • | 6 Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
  • | 7 Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
  • | 8 Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Abstract

Depression is a common psychiatric disorder that can be continuous or recurrent. It has been previously reported that intestine probiotics play an essential role in the bidirectional communication of the intestine and brain. This study aims to investigate the antidepressant effects of kefir, a probiotic supplement, and Lactobacillus rhamnosus GG and their potentials in depression-like behaviour treatment in two-week and four-week treatments. In the present study, BALB/c mice were used for this purpose. The saline- and fluoxetine-treated groups were designed as negative and positive control groups, respectively. The forced swimming and tail suspension tests have been performed to assess the level of depression-like activity. We have observed that two-week treatment reduces the duration of depression-like activities, and four-week treatment enhances the antidepressant properties. Overall, our results suggest that kefir, L. rhamnosus GG, and the investigated probiotic supplement have antidepressant-like properties.

  • Abbasi-Maleki, S., Kadkhoda, Z., and Taghizad-Farid, R. (2020). The antidepressant-like effects of Origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming test. Journal of Traditional and Complementary Medicine, 10: 327335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azcarate-Peril, M.A., Mcauliffe, O., Altermann, E., Lick, S., Russell, W.M., and Klaenhammer, T.R. (2005). Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Applied and Environmental Microbiology, 71(10): 57945804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Y.-N., Feng, L.J., Wang, B.M., Jiang, K., Li, S., Xu, X., Wang, W.-Q., Zhao, J.-W., and Wang, Y.M. (2018). Lactobacillus acidophilus and Bifidobacterium longum supernatants upregulate the serotonin transporter expression in intestinal epithelial cells. Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association, 24(1): 5966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandan, R., Argyle, P., and Mathison, G. (1982). Action of Lactobacillus bulgaricus proteinase preparations on milk proteins. Journal of Dairy Science, 65: 14081413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L.H., Liu, Y.W., Wu, C.C., Wang, S., and Tsai, Y.C. (2019). Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. Journal of Food and Drug Analysis, 27(3): 632648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtin, P., Monnet, V., and Rul, F. (2002). Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk. Microbiology, 148: 34133421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delorme, C., Bartholini, C., Bolotine, A., Ehrlich, S.D., and Renault, P. (2010). Emergence of a cell wall protease in the Streptococcus thermophilus population. Applied and Environmental Microbiology, 76(2): 451460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G. (2008). The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. Journal of Psychiatric Research, 43(2): 164174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, J., An, X.L., Lassen, S.B., Wang, H.T., Zhu, D., and Ke, X. (2019). Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans. Science of the Total Environment, 683: 210215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emge, J.R., Huynh, K., Miller, E.N., Kaur, M., Reardon, C., Barrett, K.E., and Gareau, M. G. (2016). Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease. American Journal of Physiology – Gastrointestinal and Liver Physiology, 310(11): G989G998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furness, J.B. (2012). The enteric nervous system and neurogastroenterology. Nature Reviews. Gastroenterology & Hepatology, 9: 286294.

  • Gershon, M.D. (2003). Plasticity in serotonin control mechanisms in the gut. Current Opinion in Pharmacology, 3(6): 600607.

  • Hara, T., Mihara, T., Ishibashi, M., Kumagai, T., and Joh, T. (2018). Heat-killed Lactobacillus casei subsp. casei 327 promotes colonic serotonin synthesis in mice. Journal of Functional Foods, 47: 585589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., Wang, K., and Hu, J. (2016). Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Nutrients, 8(8): 483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, T.A., Nguyen, J.C., Polglaze, K.E., and Bertrand, P.P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 8(1): 56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C.E., Underwood, C.K., Coulson, E.J., and Taylor, P.J. (2007). Copper induced oxidation of serotonin: analysis of products and toxicity. Journal of Neurochemistry, 102(4): 10351043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Lu, C., Gao, Z., Feng, Y., Luo, H., Sun, X., Hu, J., and Luo, Y. (2020). SNRIs achieve faster antidepressant effects than SSRIs by elevating the concentrations of dopamine in the forebrain. Neuropharmacology, 177(5): 108237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Wang, W., Xin, X., Song, X., and Zhang, D. (2018). Association of total zinc, iron, copper and selenium intakes with depression in the US adults. Journal of Affective Disorders, 228: 6874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maes, M., De Vos, N., Demedts, P., Wauters, A., and Neels, H. (1999). Lower serum zinc in major depression in relation to changes in serum acute phase proteins. Journal of Afective Disorders, 56(2-3): 189194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, C., Yang, Y., and Zhu, W. (2016). Gut microbiota: the brain peacekeeper. Frontiers in Microbiology, 7: 345.

  • Namkung, H., Gong, J., Yu, H., and De Lange, C. (2006). Effect of pharmacological intakes of zinc and copper on growth performance, circulating cytokines and gut microbiota of newly weaned piglets challenged with coliform lipopolysaccharides. Canadian Journal of Animal Science, 86: 511522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, B., Gurakan, G.C., and Unlu, G. (2014). Kefir: a multifaceted fermented dairy product. Probiotics and Antimicrobial Proteins, 6: 123135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pałucha-Poniewiera, A., Podkowa, K., Lenda, T., and Pilc, A. (2017). The involvement of monoaminergic neurotransmission in the antidepressant-like action of scopolamine in the tail suspension test. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79: 155161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez, V., Waguespack, A., Bidner, T., Southern, L., Fakler, T., Ward, T., Steidinger, M., and Pettigrew, J. (2011). Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. Journal of Animal Science, 89(2): 414425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savignac, H., Kiely, B., Dinan, T., and Cryan, J. (2014). Bifidobacteria exert strain‐specific effects on stress‐related behavior and physiology in BALB/c mice. Neurogastroenterology & Motility, 26(11): 16151627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlegel-Zawadzka, M. and Nowak, G. (2000). Alterations in serum and brain trace element levels after antidepressant treatment. Part II. Copper. Biological Trace Element Research, 73(1): 37-45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., Geng, W., Pan, Y., Wang, J., Xiao, P., and Wang, Y. (2019). Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan kefir improves depression-like behavior in stressed mice by modulating the gut microbiota. Food & Function, 10: 925937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szewczyk, B., Poleszak, E., Sowa-Kucma, M., Siwek, M., Dudek, D., Ryszewska-Pokrasniewicz, B., Radziwoñ-Zaleska, M., Opoka, W., Czekaj, J., and Pilo, A. (2008). Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacological Reports, 60: 588599.

    • Search Google Scholar
    • Export Citation
  • Tarleton, E.K., Kennedy, A.G., and Daley, C. (2016). Primer for nutritionists: managing the side effects of antidepressants. Clinical Nutrition ESPEN, 15: 126133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetulani, J. (2013). Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacological Reports, 65(6): 14511461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Ge, X., Wang, W., Wang, T., Cao, H., Wang, B., and Wang, B. (2015). Lactobacillus rhamnosus GG supernatant upregulates serotonin transporter expression in intestinal epithelial cells and mice intestinal tissues. Neurogastroenterology & Motility, 27(9): 12391248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willner, P. (2017). The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiology of Stress, 6: 7893.

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 24 2 4
Aug 2021 46 2 4
Sep 2021 26 2 3
Oct 2021 0 0 0