Author:
H.B. Coban Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
Izmir Health Technologies Development and Accelerator (BioIzmir), Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
Izmir Biomedicine and Genome Center, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey

Search for other papers by H.B. Coban in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6654-6573
Restricted access

Abstract

Proteases hold an important position in today's world commercial enzyme market. Among various microbial producer genera, Bacillus is leading the commercial protease production. However, industry is still actively looking for new microbial protease producers with distinctive properties. Therefore, this study was undertaken for the evaluation of protease production by Bacillus megaterium DSM 32 strain in terms of its protease productivity, calculation of various production kinetics, partial characterisation of the enzyme, and modelling the protease production process. As results, the highest protease activity, specific cellular protease production rate, and protease productivity were calculated as 255.42 U mL−1, 36.2514 U g−1, and 16.1313 U mL−1 h−1, respectively, in shake flask fermentations. Partial characterisation studies showed that the enzyme has 45 °C and pH 8 as optimum working conditions, and its activity increased by 24% with the addition of 5 mM Mn+2 to the reaction medium. Additionally, the enzyme showed high stability and kept almost full activity in a cell-free medium for 20 days at 4 °C. Furthermore, modified Gompertz model provided the best fit in describing protease production with the lowest error and high fit values.

  • Adetunji, A.I. and Olaniran, A.O. (2020). Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: a response surface methodology approach. Biocatalysis and Agricultural Biotechnology ,24: 101528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asker, M.M.S. , Mahmoud, M.G. , El Shebwy, K. , and Abd el Aziz, M.S. (2013). Purification and characterization of two thermostable protease fractions from Bacillus megaterium. Journal of Genetic Engineering and Biotechnology ,11(2): 103109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bekhit, A.E. , Hopkins, D.L. , Geesink, G. , Bekhit A.A. , and Franks, P. (2014). Exogenous proteases for meat tenderization. Critical Reviews in Food Science and Nutrition ,54(8): 10121031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhakthavalsalam, A. and Muthusamy, P. (2018). Optimization of alkaline protease production by Bacillus cereus FT 1 isolated from soil. Journal of Applied Pharmaceutical Science ,8: 119127.

    • Search Google Scholar
    • Export Citation
  • Bhunia, B. , Basak, B. , and Dey, A. (2012). A review on production of serine alkaline protease by Bacillus spp. Journal of Biochemical Technology ,3: 448457.

    • Search Google Scholar
    • Export Citation
  • Deng, A. , Wu, J. , Zhang, Y. , Zhang, G. , and Wen, T. (2010). Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresource Technology ,101(18): 71117117.

    • Search Google Scholar
    • Export Citation
  • Faccin, D. , Pacheco, M. , Rech, R. , Ayub, M. , Secchi, A. , and Cardozo, N. (2012). Modeling P(3HB) production by Bacillus megaterium. Journal of Chemical Technology and Biotechnology ,87: 325333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farhadian, S. , Asoodeh, A. , and Lagzian, M. (2015). Purification, biochemical characterization and structural modeling of a potential htrA-like serine protease from Bacillus subtilis DR8806. Journal of Molecular Catalysis B: Enzymatic ,115: 5158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, P. , Guinee, T.P. , Cogan, T.M. , and McSweeney, P.L.H. (2017). Enzymatic coagulation of milk. In: Fundamentals of cheese science. Springer, New York. pp. 185229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germec, M. , Cheng, K.C. , Karhan, M. , Demirci, A. , and Turhan, I. (2020). Application of mathematical models to ethanol fermentation in biofilm reactor with carob extract. Biomass Conversion and Biorefinery ,10(2): 237252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society B-Biological Sciences ,115: 513583.

    • Search Google Scholar
    • Export Citation
  • Hadjidj, R. , Badis, A. , Mechri, S. , Eddouaouda, K. , Khelouia, L. , Annane, R. , El Hattab, M. , and Jaouadi, B. (2018). Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. International Journal of Biological Macromolecules ,114: 10331048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, A. , Bhuiyan, F.R. , Iqbal, A. , Emon, T.H. , Ahmed, J. , and Azad, A.K. (2018). Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon ,4(6), e00646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jadhav, H.P. , Sonawane, M.S. , Khairnar, M.H. , and Sayyed, R.Z. (2020). Production of alkaline protease by rhizospheric Bacillus cereus HP_RZ17 and Paenibacillus xylanilyticus HP_RZ19. Environmental Sustainability ,3(1): 513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura-Konishi, Y. , Shoda, K. , Koga, H. , and Honda, Y. (2013). Improvement in gluten-free rice bread quality by protease treatment. Journal of Cereal Science ,58: 4550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmi, B.K.M. , Muni Kumar, D. , and Hemalatha, K.P.J. (2018). Purification and characterization of alkaline protease with novel properties from Bacillus cereus strain S8. Journal of Genetic Engineering and Biotechnology ,16(2): 295304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olajuyigbe, F. and Ajele, J. (2005). Production dynamics of extracellular protease from Bacillus species. African Journal of Biotechnology ,4: 776779.

    • Search Google Scholar
    • Export Citation
  • Pant, G. , Prakash, A. , Pavani, J.V.P. , Bera, S. , Deviram, G.V.N.S. , Kumar, A. , Panchpuri, M. , and Prasuna, R.G. (2015). Production, optimization and partial purification of protease from Bacillus subtilis. Journal of Taibah University for Science ,9(1): 5055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearl, R. and Reed, L.J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences ,6(6): 275288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porras M.A. , Ramos F.D. , Diaz M.S. , Cubitto M.A. , and Villar M.A. (2019). Modeling the bioconversion of starch to P(HB-co-HV) optimized by experimental design using Bacillus megaterium BBST4 strain. Environmental Technology ,40(9): 11851202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puri, S. , Beg, Q. , and Gupta, R. (2002). Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Current Microbiology ,44(4): 286290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rekik, H. , Zaraî Jaouadi, N. , Gargouri, F. , Bejar, W. , Frikha, F. , Jmal, N. , Bejar, S. , and Jaouadi, B. (2019). Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. International Journal of Biological Macromolecules ,121: 12271239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, F.J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany ,10(2): 290301.

  • Sablani, S. , Rahman, M. , Datta, A. , and Mujumdar, A. (2006). Handbook of food and bioprocess modeling techniques .CRC Press, Boca Raton, FL, USA. 624 pages.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaithanomsat, P.M. , Malapant, T. , and Apiwattanapiwat, W. (2008). Silk degumming solution as substrate for microbial protease production. Kasetsart Journal - Natural Science ,42: 543551.

    • Search Google Scholar
    • Export Citation
  • Venkateshkumar, R. , Shanmugam, S. , and Veerappan, A.R. (2020). Anaerobic co-digestion of cow dung and cotton seed hull with different blend ratio: experimental and kinetic study. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-020-01006-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Votruba, J. , Pazlarová, J. , Dvořáková, M. , Vanatalu, K. , Vfichova, L. , Strnadova, M. , Kucerova, H. , and Chaloupka, J. (1987). External factors involved in the regulation of an extracellular proteinase synthesis in Bacillus megaterium. Applied Microbiology and Biotechnology, 26: 373377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. , Xu, A. , Wan, Y. , and Li, Q. (2013). Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001. Applied Biochemistry and Biotechnology, 170: 20212033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yossan, S. , Reungsang, A. and Yasuda, M. (2006). Purification and characterization of alkaline protease from Bacillus megaterium isolated from Thai fish sauce fermentation process. Science Asia ,32: 377383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J.J. , Gao, J.X. , Chen, F. , Ren, F.Z. , Dai, R.T. , Liu, Y. , and Li, X.M. (2014). Modeling and predicting the effect of temperature on the growth of Proteus mirabilis in chicken. Journal of Microbiological Methods ,99: 3843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwietering, M.H. , Jongenburger, I. , Rombouts, F.M. , and Vantriet, K. (1990). Modeling of the bacterial-growth curve. Applied and Environmental Microbiology ,56(6): 18751881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 4 1 1
Jul 2023 8 0 0
Aug 2023 23 0 0
Sep 2023 16 0 0
Oct 2023 5 11 0
Nov 2023 30 19 0
Dec 2023 6 1 0