Authors:
L.P. Wang School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China

Search for other papers by L.P. Wang in
Current site
Google Scholar
PubMed
Close
,
Z.F. Wang School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China

Search for other papers by Z.F. Wang in
Current site
Google Scholar
PubMed
Close
,
S. Reziwangul School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China

Search for other papers by S. Reziwangul in
Current site
Google Scholar
PubMed
Close
, and
S.E. Chen School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China

Search for other papers by S.E. Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5128-4072
Restricted access

Abstract

This study optimised the hydrolysis process of chicken plasma protein and explored the in vivo antioxidant activity of its hydrolysates. The results showed that alkaline protease provided the highest degree of hydrolysis (19.30%), the best antioxidant effect in vitro. The optimal hydrolysis process of alkaline protease was: temperature 50 °C, time 8 h, [E]/[S] 7000 U g−1, pH 7.5. Antioxidant studies in vivo showed that the low, medium, and high dose groups significantly reduced the serum MDA and protein carbonyl content (P < 0.05) and significantly increased the serum SOD and GSH contents (P < 0.05). The results of HE staining of the liver showed that the liver cells in the model group were severely damaged, but the chicken plasma protein hydrolysates could alleviate this pathological damage. Chicken plasma protein hydrolysis products had certain antioxidant activity.

  • Abeyrathne, E., Huang, X., and Ahn, D.U. (2018). Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides – a review. Poultry Science, 97(4): 14621468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adewole, K.E. and Adebayo, J.O. (2016). Antioxidant defense system induced by cysteine-stabilised peptide fraction of aqueous extract of Morinda lucida leaf in selected tissues of Plasmodium berghei-infected mice. Journal of Integrative Medicine, 15: 388397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, H., Soottawat, B., and Theeraphol, S. (2016). Comparative study on antioxidant activity of hydrolysates from splendid squid (Loligo formosana) gelatin and protein isolate prepared using protease from hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Journal of Food Science and Technology, 53: 36153623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asokan, S.M., Wang, T., Su, W.T., and Lin, W.T. (2019). Antidiabetic effects of a short peptide of potato protein hydrolysate in STZ-induced diabetic mice. Nutrients, 11(4): 779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, D.C., Xu, X., Ferrante, A,W., and Krakoff, J. (2019). Reduced plasma albumin predicts type 2 diabetes and is associated with greater adipose tissue macrophage content and activation. Diabetology and Metabolic Syndrome, 11: 14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., Jiang, S., Chen, Q., Liu, Q., and Kong, B. (2019). Antioxidant activities and emulsifying properties of porcine plasma protein hydrolysates modified by oxidised tannic acid and oxidised chlorogenic acid. Process Biochemistry, 79: 105113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El-Fattah, A.M.A., Sakr, S.S., El-Dieb, S.M., and Elkashef, H.A.S. (2016). Bioactive peptides with ACE-I and antioxidant activity produced from milk proteolysis. International Journal of Food Properties, 20(12): 30333042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, D., Guo, P., Cao, X., Ge, L., and Ma, Z. (2020). Improvement of chicken plasma protein hydrolysate angiotensin converting enzyme inhibitory activity by optimizing plastein reaction. Food Science and Nutrition, 8(6): 27982808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gluvic, A. and Ulrih, N.P. (2019). Peptides derived from food sources: antioxidative activities and interactions with model lipid membranes. Food Chemistry, 287: 324332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C.Y., Chiang, W.D., Pai, P.Y., and Lin, W.T. (2015). Potato protein hydrolysate attenuates high fat diet-induced cardiac apoptosis through SIRT1/PGC-1a/Akt signalling. Journal of Functional Foods, 12: 389398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Indiano-Romacho, P., Fernández-Tomé, S., Amigo, L., and Hernández-Ledesma, B. (2016). Multifunctionality of lunasin and peptides released during its simulated gastrointestinal digestion. Food Research International, 125: 108513108520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, M. and Lee, L. (2005). Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Science, 69: 653661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.S., Lee, W., Lee, J.H., Sanjeewa, K., Fernando, I., Ko, S.C., Lee, S.H., Kim, Y.T., and Jeon, Y.J. (2018). Purification and identification of an antioxidative peptide from digestive enzyme hydrolysis of cutlassfish muscle. Journal of Aquatic Food Product Technology, 27: 934944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumari, S., Pandey, A., Soni, A., Mahala, A., Sarkar, S., Suradkar, U., and Ambedkar, Y.R. (2022). Optimisation of antioxidant, antimicrobial and metal-chelating properties of bioactive peptides from blood wastes by enzymatic hydrolysis. Animal Production Science, 62: 891900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, S.A., Mullen, A.M., O'Neill, E.E., and García, C.A. (2017). Harnessing the potential of blood proteins as functional ingredients: a review of the state of the art in blood processing. Comprehensive Reviews in Food Science & Food Safety, 16(2): 330344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nath, A., Kailo, G.G., Mednyánszky, Z., Kiskó, G., Csehi, B., Pásztorné-Huszár, K., Gerencsér-Berta, R., Galambos, I., Pozsgai, E., and Bánvölgyi, S. (2020). Antioxidant and antibacterial peptides from soybean milk through enzymatic- and membrane-based technologies. Bioengineering, 7: 5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngoh, Y.Y. and Gan, C.Y. (2016). Enzyme-assisted extraction and identification of antioxidative and-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chemistry, 190: 331337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ofori, J.A. and Hsieh, Y.H.P. (2014). Issues related to the use of blood in food and animal feed. Critical Reviews in Food Science and Nutrition, 54(5): 687697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearce, K., Karahalios, D.A., and Friedman, M.E. (2010). Ninhydrin assay for proteolysis in ripening cheese. Journal of Food Science, 53: 432435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rizzello, C.G., Tagliazucchi, D., Babini, E., Rutella, G.S., Saa, D.L.T., and Gianotti, A. (2016). Bioactive peptides from vegetable food matrices: research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods, 27: 549569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H.W., Jung, E.Y., Go, G.W., Kim, G.D., Joo, S.T., and Yang, H.S. (2015). Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology. Food Chemistry, 185: 106111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, Z., Yu, L., Li, X., and Su, X. (2016). Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p. Cell and Bioscience, 6: 5364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Z., Wen, H., Zhai, L., Yu, Y., Li, Y., Yu, W., Cheng, A., Wang, C., and Kou, X. (2015). Antioxidant activity and anti-proliferative effect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Research International, 77: 7581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaghoubzadeh, Z., Ghadikolaii, F.P., Kaboosi, H., Safari, R., and Fattahi, E. (2019). Antioxidant activity and anticancere effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. International Journal of Peptide Research and Therapeutics, 26: 625632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Huang, J., Dong, X., Zhang, Y., and Zhou, G. (2020a). Purification and identification of antioxidant peptides from duck plasma proteins. Food Chemistry, 319: 126534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Huang, J., Zhu, Z., and Huang, M. (2020b). Investigation of optimal conditions for production of antioxidant peptides from duck blood plasma: response surface methodology. Poultry Science, 99: 71597168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z.J., Si, D.Y., Ahmad, B, Li, Z.X., and Zhang, R.J. (2018). A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate. Food Research International, 106: 410419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Y., Yang, H., Li, P.P., Zhang, M.H., Zhang, X.X., Xu, W.M., and Wang, D.Y. (2018). Effect of different time of ultrasound treatment on physicochemical, thermal, and antioxidant properties of chicken plasma protein. Poultry Science, 98: 19251933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article | Effective from 1st Feb: 450 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 87 0 0
Sep 2024 81 0 0
Oct 2024 334 1 1
Nov 2024 96 0 0
Dec 2024 69 0 0
Jan 2025 48 0 0
Feb 2025 0 0 0