Authors:
L.P. Wang School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China

Search for other papers by L.P. Wang in
Current site
Google Scholar
PubMed
Close
,
Z.F. Wang School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China

Search for other papers by Z.F. Wang in
Current site
Google Scholar
PubMed
Close
,
S. Reziwangul School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China

Search for other papers by S. Reziwangul in
Current site
Google Scholar
PubMed
Close
, and
S.E. Chen School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China

Search for other papers by S.E. Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5128-4072
Restricted access

Abstract

This study optimised the hydrolysis process of chicken plasma protein and explored the in vivo antioxidant activity of its hydrolysates. The results showed that alkaline protease provided the highest degree of hydrolysis (19.30%), the best antioxidant effect in vitro. The optimal hydrolysis process of alkaline protease was: temperature 50 °C, time 8 h, [E]/[S] 7000 U g−1, pH 7.5. Antioxidant studies in vivo showed that the low, medium, and high dose groups significantly reduced the serum MDA and protein carbonyl content (P < 0.05) and significantly increased the serum SOD and GSH contents (P < 0.05). The results of HE staining of the liver showed that the liver cells in the model group were severely damaged, but the chicken plasma protein hydrolysates could alleviate this pathological damage. Chicken plasma protein hydrolysis products had certain antioxidant activity.

  • Abeyrathne, E., Huang, X., and Ahn, D.U. (2018). Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides – a review. Poultry Science, 97(4): 14621468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adewole, K.E. and Adebayo, J.O. (2016). Antioxidant defense system induced by cysteine-stabilised peptide fraction of aqueous extract of Morinda lucida leaf in selected tissues of Plasmodium berghei-infected mice. Journal of Integrative Medicine, 15: 388397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, H., Soottawat, B., and Theeraphol, S. (2016). Comparative study on antioxidant activity of hydrolysates from splendid squid (Loligo formosana) gelatin and protein isolate prepared using protease from hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Journal of Food Science and Technology, 53: 36153623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asokan, S.M., Wang, T., Su, W.T., and Lin, W.T. (2019). Antidiabetic effects of a short peptide of potato protein hydrolysate in STZ-induced diabetic mice. Nutrients, 11(4): 779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, D.C., Xu, X., Ferrante, A,W., and Krakoff, J. (2019). Reduced plasma albumin predicts type 2 diabetes and is associated with greater adipose tissue macrophage content and activation. Diabetology and Metabolic Syndrome, 11: 14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., Jiang, S., Chen, Q., Liu, Q., and Kong, B. (2019). Antioxidant activities and emulsifying properties of porcine plasma protein hydrolysates modified by oxidised tannic acid and oxidised chlorogenic acid. Process Biochemistry, 79: 105113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El-Fattah, A.M.A., Sakr, S.S., El-Dieb, S.M., and Elkashef, H.A.S. (2016). Bioactive peptides with ACE-I and antioxidant activity produced from milk proteolysis. International Journal of Food Properties, 20(12): 30333042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, D., Guo, P., Cao, X., Ge, L., and Ma, Z. (2020). Improvement of chicken plasma protein hydrolysate angiotensin converting enzyme inhibitory activity by optimizing plastein reaction. Food Science and Nutrition, 8(6): 27982808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gluvic, A. and Ulrih, N.P. (2019). Peptides derived from food sources: antioxidative activities and interactions with model lipid membranes. Food Chemistry, 287: 324332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C.Y., Chiang, W.D., Pai, P.Y., and Lin, W.T. (2015). Potato protein hydrolysate attenuates high fat diet-induced cardiac apoptosis through SIRT1/PGC-1a/Akt signalling. Journal of Functional Foods, 12: 389398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Indiano-Romacho, P., Fernández-Tomé, S., Amigo, L., and Hernández-Ledesma, B. (2016). Multifunctionality of lunasin and peptides released during its simulated gastrointestinal digestion. Food Research International, 125: 108513108520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, M. and Lee, L. (2005). Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Science, 69: 653661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.S., Lee, W., Lee, J.H., Sanjeewa, K., Fernando, I., Ko, S.C., Lee, S.H., Kim, Y.T., and Jeon, Y.J. (2018). Purification and identification of an antioxidative peptide from digestive enzyme hydrolysis of cutlassfish muscle. Journal of Aquatic Food Product Technology, 27: 934944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumari, S., Pandey, A., Soni, A., Mahala, A., Sarkar, S., Suradkar, U., and Ambedkar, Y.R. (2022). Optimisation of antioxidant, antimicrobial and metal-chelating properties of bioactive peptides from blood wastes by enzymatic hydrolysis. Animal Production Science, 62: 891900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, S.A., Mullen, A.M., O'Neill, E.E., and García, C.A. (2017). Harnessing the potential of blood proteins as functional ingredients: a review of the state of the art in blood processing. Comprehensive Reviews in Food Science & Food Safety, 16(2): 330344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nath, A., Kailo, G.G., Mednyánszky, Z., Kiskó, G., Csehi, B., Pásztorné-Huszár, K., Gerencsér-Berta, R., Galambos, I., Pozsgai, E., and Bánvölgyi, S. (2020). Antioxidant and antibacterial peptides from soybean milk through enzymatic- and membrane-based technologies. Bioengineering, 7: 5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngoh, Y.Y. and Gan, C.Y. (2016). Enzyme-assisted extraction and identification of antioxidative and-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chemistry, 190: 331337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ofori, J.A. and Hsieh, Y.H.P. (2014). Issues related to the use of blood in food and animal feed. Critical Reviews in Food Science and Nutrition, 54(5): 687697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearce, K., Karahalios, D.A., and Friedman, M.E. (2010). Ninhydrin assay for proteolysis in ripening cheese. Journal of Food Science, 53: 432435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rizzello, C.G., Tagliazucchi, D., Babini, E., Rutella, G.S., Saa, D.L.T., and Gianotti, A. (2016). Bioactive peptides from vegetable food matrices: research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods, 27: 549569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H.W., Jung, E.Y., Go, G.W., Kim, G.D., Joo, S.T., and Yang, H.S. (2015). Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology. Food Chemistry, 185: 106111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, Z., Yu, L., Li, X., and Su, X. (2016). Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p. Cell and Bioscience, 6: 5364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Z., Wen, H., Zhai, L., Yu, Y., Li, Y., Yu, W., Cheng, A., Wang, C., and Kou, X. (2015). Antioxidant activity and anti-proliferative effect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Research International, 77: 7581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaghoubzadeh, Z., Ghadikolaii, F.P., Kaboosi, H., Safari, R., and Fattahi, E. (2019). Antioxidant activity and anticancere effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. International Journal of Peptide Research and Therapeutics, 26: 625632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Huang, J., Dong, X., Zhang, Y., and Zhou, G. (2020a). Purification and identification of antioxidant peptides from duck plasma proteins. Food Chemistry, 319: 126534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Huang, J., Zhu, Z., and Huang, M. (2020b). Investigation of optimal conditions for production of antioxidant peptides from duck blood plasma: response surface methodology. Poultry Science, 99: 71597168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z.J., Si, D.Y., Ahmad, B, Li, Z.X., and Zhang, R.J. (2018). A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate. Food Research International, 106: 410419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Y., Yang, H., Li, P.P., Zhang, M.H., Zhang, X.X., Xu, W.M., and Wang, D.Y. (2018). Effect of different time of ultrasound treatment on physicochemical, thermal, and antioxidant properties of chicken plasma protein. Poultry Science, 98: 19251933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2023 31 19 0
Nov 2023 16 13 0
Dec 2023 90 4 4
Jan 2024 66 5 3
Feb 2024 81 1 0
Mar 2024 140 1 0
Apr 2024 38 0 0