Authors:
B. Oskaybaş-Emlek Department of Food Engineering, Niğde Ömer Halisdemir University, Niğde, Turkey

Search for other papers by B. Oskaybaş-Emlek in
Current site
Google Scholar
PubMed
Close
,
A. Özbey Department of Food Engineering, Niğde Ömer Halisdemir University, Niğde, Turkey

Search for other papers by A. Özbey in
Current site
Google Scholar
PubMed
Close
, and
K. Kahraman Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, Turkey

Search for other papers by K. Kahraman in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2786-3944
Restricted access

Abstract

The aim of this study was to investigate the effect of germination on the physicochemical, structure, pasting, and morphological properties of corn. Germination improved total phenolic content (TPC) and antioxidant capacity (AC). Scanning electron micrographs (SEM) of flour showed that some starch granule was destroyed with germination. In the same way, pasting values decreased due to changes in the starch granule. FT-IR (Fourier Transform Infrared) spectra confirmed that germination leads to changes in the chemical structure. The XRD (X-ray diffractometer) analysis showed that patterns did not change with germination. In addition, raw and germinated corn flour were used in gluten-free cookie preparation. The cookie dough was evaluated for stickiness. The physical, textural, colour, TPC, and AC of cookie samples were determined. Gluten-free cookies prepared with germinated flour exhibited significantly higher AC due to increase in TPC. Germination could be used to enhance functional properties of corn.

  • Adedeji, O., Oyinloye, O., and Ocheme, O. (2014). Effects of germination time on the functional properties of maize flour and the degree of gelatinization of its cookies. African Journal of Food Science ,8: 4247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agrahar-Murugkar, D., Gulati, P., Kotwaliwale, N., and Gupta, C. (2015). Evaluation of nutritional, textural and particle size characteristics of dough and biscuits made from composite flours containing sprouted and malted ingredients. Journal of Food Science and Technology ,52: 51295137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al Shehry, G.A. (2016). Use of corn and quinoa flour to produce bakery. Advances in Environmental Biology ,10(12): 237244.

  • AOAC (1995). Official methods of analysis. AOAC International, Washington, DC.

  • Cabanillas, B. (2020). Gluten-related disorders: celiac disease, wheat allergy, and nonceliac gluten sensitivity. Critical Reviews in Food Science and Nutrition ,60(15): 26062621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chauhan, A., Saxena, D., and Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT – Food Science and Technology ,63: 939945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, H.-J., Cho, D.-W., Park, J.-D., Kweon, D.-K., and Lim, S.-T. (2012). In vitro starch digestibility and pasting properties of germinated brown rice after hydrothermal treatments. Journal of Cereal Science ,56: 451456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhillon, B., Choudhary, G., and Sodhi, N.S. (2020). A study on physicochemical, antioxidant and microbial properties of germinated wheat flour and its utilization in breads. Journal of Food Science and Technology, 57: 28002808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farbo, M.G., Fadda, C., Marceddu, S., Conte, P., Del Caro, A., and Piga, A. (2020). Improving the quality of dough obtained with old durum wheat using hydrocolloids. Food Hydrocolloids ,101: 105467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghumman, A., Kaur, A., and Singh, N. (2016). Impact of germination on flour, protein and starch characteristics of lentil (Lens culinaris) and horsegram (Macrotyloma uniflorum L.) lines. LWT – Food Science and Technology, 65: 137144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, K., Chen, L., Li, X., Sun, L., and Liu, K. (2018). Effects of germination combined with extrusion on the nutritional composition, functional properties and polyphenol profile and related in vitro hypoglycemic effect of whole grain corn. Journal of Cereal Science ,83: 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, R., Saxena, D., and Singh, S. (2016). Physico-chemical, textural, sensory and antioxidant characteristics of gluten–free cookies made from raw and germinated Chenopodium (Chenopodium album) flour. LWT – Food Science and Technology ,71: 281287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, X., Lin, S., Gao, J., Wang, Y., Ying, J., Dong, Z., and Zhou, W. (2020). How manipulation of wheat bran by superfine-grinding affects a wide spectrum of dough rheological properties. Journal of Cereal Science ,96: 103081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juhász, A., Colgrave, M.L., and Howitt, C.A. (2020). Developing gluten-free cereals and the role of proteomics in product safety. Journal of Cereal Science ,93: 102932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairuddin, M.A.N. and Lasekan, O. (2021). Gluten-free cereal products and beverages: a review of their health benefits in the last five years. Foods ,10(11): 2523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korus, A., Gumul, D., Krystyjan, M., Juszczak, L., and Korus, J. (2017). Evaluation of the quality, nutritional value and antioxidant activity of gluten-free biscuits made from corn-acorn flour or corn-hemp flour composites. European Food Research and Technology ,243: 14291438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., Kim, S.-R., Park, J.H., Park, K.-H., Jeong, K.Y., Lee, J.-H., Kang, C.-S., Kim, K.-H., and Park, J.-W. (2022). Evaluation of allergenicity on a ω-5 gliadin-deficient cultivar in wheat-dependent exercise-induced anaphylaxis. Allergy, Asthma & Immunology Research ,14(4): 379392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y.-T., Shim, M.-J., Goh, H.-K., Mok, C., and Puligundla, P. (2019). Effect of jet milling on the physicochemical properties, pasting properties, and in vitro starch digestibility of germinated brown rice flour. Food Chemistry ,282: 164168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., Zhang, M., and Bhandari, B. (2019). Influence of drying methods on some physicochemical, functional and pasting properties of Chinese yam flour. LWT – Food Science and Technology ,111: 182189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., Liu, Y., Liu, J., Zhang, J., and Liu, R. (2020). Changes in starch structures and in vitro digestion characteristics during maize (Zea mays L.) germination. Food Science & Nutrition ,8: 17001708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newberry, C., McKnight, L., Sarav, M., and Pickett-Blakely, O. (2017). Going gluten free: the history and nutritional implications of today’s most popular diet. Current Gastroenterology Reports ,19(11): 54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obinna-Echem, P.C. and Robinson, E.S. (2019). Proximate composition, physical and sensory properties of biscuits produced from blends of maize (Zea mays) and tigernut (Cyperus esculentus) flour. Sky Journal of Food Science ,7(2): 3036.

    • Search Google Scholar
    • Export Citation
  • Oskaybaş-Emlek, B., Özbey, A., and Kahraman, K. (2021). Effects of germination on the physicochemical and nutritional characteristics of lentil and its utilization potential in cookie-making. Journal of Food Measurement and Characterization, 15: 42454255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Packkia-Doss, P.P., Chevallier, S., Pare, A., and Le-Bail, A. (2019). Effect of supplementation of wheat bran on dough aeration and final bread volume. Journal of Food Engineering ,252: 2835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patil, S., Sonawane, S.K., Mali, M., Mhaske, S., and Arya, S.S. (2020). Pasting, viscoelastic and rheological characterization of gluten free (cereals, legume and underutilized) flours with reference to wheat flour. Journal of Food Science and Technology ,57: 29602966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pietzak, M. and Kerner JR, J.A. (2012). Celiac disease, wheat allergy, and gluten sensitivity: when gluten free is not a fad. Journal of Parenteral and Enteral Nutrition ,36(1S): 68S75S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rai, S., Kaur, A., and Singh, B. (2014). Quality characteristics of gluten free cookies prepared from different flour combinations. Journal of Food Science and Technology ,51: 785789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serna-Saldivar, S.O. and Carrillo, E.P. (2019). Food uses of whole corn and dry-milled fractions. In: Serna-Saldivar, S.O. (Ed.), Corn. chemistry and technology, 3rd ed., Elsevier, pp. 435467.

    • Search Google Scholar
    • Export Citation
  • Sharma, S., Singh, A., and Singh, B. (2019). Effect on germination time and temperature on techno-functional properties and protein solubility of pigeon pea (Cajanus cajan) flour. Quality Assurance and Safety of Crops & Foods ,11: 305312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherf, K.A. (2019). Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease. Current Opinion in Food Science ,25: 3541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., Sharma, S., and Singh, B. (2017). Effect of germination time and temperature on the functionality and protein solubility of sorghum flour. Journal of Cereal Science ,76: 131139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sollid, L.M., Qiao, S.-W., Anderson, R.P., Gianfrani, C., and Koning, F. (2012). Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics, 64: 455460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sollid, L.M., Tye-Din, J.A., Qiao, S.-W., Anderson, R.P., Gianfrani, C., and Koning, F. (2020). Update 2020: nomenclature and listing of celiac disease–relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics ,72: 8588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatar, F., Tunç, M.T., Dervisoglu, M., Cekmecelioglu, D., and Kahyaoglu, T. (2014). Evaluation of hemicellulose as a coating material with gum Arabic for food microencapsulation. Food Research International ,57: 168175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umerah, N., Asouzu, A., and Oly-Alawuba, N. (2020). Biscuit making potentials of cooking banana and yellow maize flour blends. Asian Journal of Advanced Research and Reports ,12(3): 2531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., Chen, L., Ali, B., Yang, N., Chen, Y., Wu, F., Jin, Z., and Xu, X. (2017). Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.). Food Chemistry ,229: 312318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, P., Zhao, Y., Wen, C., Cheng, S., and Lin, S. (2017). Effects of electron beam irradiation on physicochemical properties of corn flour and improvement of the gelatinization inhibition. Food Chemistry ,233: 467475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., Wei, W., Hu, W., Wang, X., Yu, P., Gan, J., Liu, Y., and Xu, C. (2017). Accelerated chemotaxonomic discrimination of marine fish surimi based on Tri-step FT-IR spectroscopy and electronic sensory. Food Control ,73: 11241133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2023 38 13 0
Nov 2023 42 14 0
Dec 2023 213 4 0
Jan 2024 160 2 0
Feb 2024 69 1 0
Mar 2024 174 1 2
Apr 2024 61 0 0