Authors:
M. Ozukum Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141004, India

Search for other papers by M. Ozukum in
Current site
Google Scholar
PubMed
Close
,
S. Kumar Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141004, India

Search for other papers by S. Kumar in
Current site
Google Scholar
PubMed
Close
,
K. Kaur Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141004, India

Search for other papers by K. Kaur in
Current site
Google Scholar
PubMed
Close
, and
A. Singh Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India

Search for other papers by A. Singh in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1554-0512
Restricted access

Abstract

Effect of microwave drying on milling, cooking, and microstructure characteristic of paddy rice in comparison to hot air drying was assessed in the present study. Results revealed that modified microwave drying significantly (P < 0.05) affected the milling quality of paddy. Raw paddy had head rice recovery of 49.63%, while after microwave drying, the head rice recovery increased by 6.73% in comparison to hot air drying. Microwave drying brought significant changes in the colour characteristic of rice as it had total colour change of 13.50 in comparison to 10.93 by hot air drying. Cooking time and water uptake ratio after microwave drying increased to 31.46 min and 3.16%, in comparison to 27.05 min and 2.65% for hot air dried samples, respectively. Scanning Electron Microscope images revealed that both hot air and microwave dried rice had a coarse surface and large starch particles, while starch structure was more damaged in hot air drying, however, agglomeration of protein-starch matrix was more uniform in microwave dried samples due to modification of the microwave applicator that prevented thermal decomposition. It was recommended that paddy may be dried using a modified microwave applicator with a shorter duration and a better quality.

  • Atungulu, G., Smith, D., Wilson, S., Zhong, H., Sadaka, S., and Rogers, S. (2016). Assessment of one-pass drying of rough rice with an industrial microwave system on milling quality. Applied Engineering in Agriculture, 32: 417429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, G. and Sutar, P.P. (2020). Starch gelatinization and drying of paddy using microwave rotary drum dryer: Optimization, kinetics, and cooking studies. Drying Technology, 39: 965981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavan, P., Sharma, S.R., Mittal, T.C., Mahajan, G., and Gupta, S.K. (2016). Optimization of parboiling parameters to improve the quality characteristics of Pusa Basmati 1509. Journal of Food Process Engineering, 40(3): e12454.

    • Search Google Scholar
    • Export Citation
  • FAO (2019). The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction, Rome, Available at: http://www.fao.org/3/ca6030en/ca6030en.pdf (Accessed: 22 June 2022).

    • Search Google Scholar
    • Export Citation
  • FAO (2021). Crop prospects and food situation – Quarterly global report No. 4, December 2021, Rome, Available at: https://doi.org/10.4060/cb7877en(Accessed: 22 June 2022).

    • Search Google Scholar
    • Export Citation
  • Lamacchia, C., Landriscina, L.D., and Agnello, P. (2016). Changes in wheat kernel proteins induced by microwave treatment. Food Chemistry ,197(Part A): 634640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le, T.Q. and Songsermpong, S. (2014). Head rice yield, pasting property and correlations of accelerated paddy rice aging properties by microwave heating conditions. International Food Research Journal, 21: 703712.

    • Search Google Scholar
    • Export Citation
  • Le, T.Q., Songsermpong, S., Rumpagaporn, P., Suwanagul, A., and Wallapa, S. (2014). Microwave heating for accelerated aging of paddy and white rice. Australian Journal of Crop Science ,8(9): 13481358.

    • Search Google Scholar
    • Export Citation
  • Lisle, K.J., Martin, M., and Fitzgerald, M.A. (2000). Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chemistry ,77(5): 627632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohapatra, D. and Bal, S. (2007). Effect of degree of milling on specific energy consumption, optical measurements and cooking quality of rice. Journal of Food Engineering ,80: 119125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olatunde, G.A., Atungulu, G.G., Smith, D., Sadaka, S., and Rogers, S. (2017). One-pass drying of rough rice with an industrial 915 MHz microwave dryer: quality and energy use consideration. Biosystem Engineering, 155: 3343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olayanju, T.A., Okonkwo. C.E., Ojediran, J.O., Hussain, S.Z., Dottie, E.P., and Ayoola, A.S. (2021). Interactive effects and modeling of some processing parameters on milling, cooking, and sensory properties for Nigerian rice using a one-step rice milling machine. Heliyon, 7(4): e06739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosniyana, A., Hazila, K.K., Hashifah M.A., and Nonin, S.A.S. (2010). Quality characteristics of organic and inorganic Maswangi rice variety. Journal of Tropical Agriculture and Food Science, 38: 7179.

    • Search Google Scholar
    • Export Citation
  • Singh, N., Kaur, L., Sodhi, N.S., and Sekhon, K.S. (2005). Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars. Food Chemistry, 89: 253259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., Sharma, S., and Singh, B. (2017). Influence of grain activation conditions on functional characteristics of brown rice flour. Food Science and Technology International, 23(6): 500512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., Sharma, S., Gupta, A., and Singh, B. (2021). Impact of grain germination on in vitro antioxidative properties, nutrients digestibility, and functional attributes of brown rice flour. Acta Alimentaria, 50(2): 259268.

    • Search Google Scholar
    • Export Citation
  • Smith, D.L. and Atungulu, G.G. (2018). Impact of drying deep beds of rice with microwave set at 915 MHz frequency on the rice milling yields. Innovative Food Science & Emerging Technology, 45: 220227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tangsrianugul, N., Rungtiwa W., and Suphantharika, M. (2019). Physicochemical and rheological properties of flour and starch from Thai pigmented rice cultivars. International Journal of Biological Macromolecules ,137: 666675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yadav, B.K. and Jindal, V.K. (2007). Water uptake and solid loss during cooking of milled rice (Oryza sativa L.) in relation to its physicochemical properties. Journal of Food Engineering, 80(1): 4654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., Fan. Y., Song. S., Wang. D., Zhang. Y., and Cao, M. (2021). Frictional behavior of brown rice grain during moderate processing. Tribology International ,162: 107123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 18 0 0
Jul 2023 49 0 0
Aug 2023 46 0 0
Sep 2023 30 0 0
Oct 2023 23 17 0
Nov 2023 27 13 0
Dec 2023 11 0 0