Authors:
L. Furlaneto-Maia Post-Graduation Program of Food Technology, Federal University of Technology of the Paraná State, Campus Londrina (UTFPR-LD), Av. dos Pioneiros 3131 CEP 86036-370, Londrina, Paraná, Brazil

Search for other papers by L. Furlaneto-Maia in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7164-3391
,
N. Mücke Post-Graduation Program of Food Technology, Federal University of Technology of the Paraná State, Campus Londrina (UTFPR-LD), Av. dos Pioneiros 3131 CEP 86036-370, Londrina, Paraná, Brazil

Search for other papers by N. Mücke in
Current site
Google Scholar
PubMed
Close
, and
M.C. Furlaneto Department of Microbiology, State University of Londrina, C.P. 6001, CEP 86051990, Londrina, Paraná, Brazil

Search for other papers by M.C. Furlaneto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Enterococcus spp. were isolated from sausage and yogurt line production. The genomic assay was performed by PCR, and distinct enterococci (n = 28) were identified. Testing revealed that 10.7% of the isolates had a resistant phenotype, 7.1% were resistant to erythromycin (Enterococcus faecium) and 3.5% were resistant to tetracycline (Enterococcus gallinarum). Enterococci cells and biofilm formation in 24 well polystyrene plates and the effect of sanitisation procedures in these biofilms were determined. The sanitisers were chlorinated alkaline H (CAH), chlorinated alkaline A (CAA), quaternary ammonium D (QAD), quaternary ammonium M (QAM), chlorine dioxide (CD), sodium hypochlorite (SH), and peracetic acid (PA). A total of 7 isolates (25%) moderately and the others poorly formed biofilms. The best reduction results were 61 and 55% of the cells with the CAH sanitiser in BHI and water, respectively. The PAA, SH, and CD sanitisers showed low efficiency on Enterococcus planctonics, and the other had an effect on cell growth. The sanitisers CAH, QAD, QAM, PAA, and SH showed efficiency in reducing the cell viability of Enterococcus in biofilms, and values obtained from CAA and CD suggested low biofilm removal capacity. Enterococcus spp. form biofilms and have become a problem in the food industry.

  • Amidi-Fazli, N. and Hanifian, S. (2022). Biodiversity, antibiotic resistance and virulence traits of Enterococcus species in artisanal dairy products. International Dairy Journal, 129: 105287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braïek, O.B. and Smaoui, S. (2019). Enterococci: between emerging pathogens and potential probiotics. BioMed Research International, 2019: 5938210. https://doi.org/10.1155/2019/5938210.

    • Search Google Scholar
    • Export Citation
  • Ben Said, L., Klibi, N., Dziri, R., Borgo, F., Boudabous, A., Ben Slama, K., and Torres, C. (2016). Prevalence, antimicrobial resistance and genetic lineages of Enterococcus spp. from vegetable food, soil and irrigation water in farm environments in Tunisia. Journal of the Science of Food and Agriculture, 30: 16271633. https://doi.org/10.1002/jsfa.7264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, J.D. and Flint, S.H. (2008). Biofilms in the food industry: problems and potential solutions. International Journal of Food Science + Technology, 43: 21632176. https://doi.org/10.1111/j.1365-2621.2008.01839.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlie, S.M, Boucher, C.E., and Bragg, R.R. (2020). Molecular basis of bacterial disinfectant resistance. Drug Resistance Updates, 48: 100672. https://doi.org/10.1016/j.drup.2019.100672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, M.R., Fernandes, M.S., Kabuki, D.Y., and Kuaye, A.Y. (2017). Biofilm formation on stainless steel as a function of time and temperature and control through sanitizers, International Dairy Journal, 68: 916. https://doi.org/10.1016/j.idairyj.2016.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clinical and Laboratory Standards Institute (2016). Performance standards for antimicrobial susceptibility testing — 26th ed., M100. CLSI, Wayne, PA, USA.

    • Search Google Scholar
    • Export Citation
  • Dutka-Malen, S., Evers, S., and Courvalin, P. (1995). Detection of glycopeptides resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of Clinical Microbiology, 33: 2427. https://journals.asm.org/doi/10.1128/jcm.33.1.24-27.1995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandes, M.S., Kabuki, D.Y., and Kuaye, A.Y. (2015). Biofilms of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta and the control of these pathogens through cleaning and sanitization procedures. International Journal of Food Microbiology, 200: 97103. https://doi.org/10.1016/j.ijfoodmicro.2015.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furlaneto-Maia, L., Rocha, K.R., Siqueira, V.L.D., and Furlaneto, M.C. (2014a). Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus spp. Revista do Instituto de Medicina Tropical de São Paulo, 2: 97103. https://doi.org/10.1590/S0036-46652014000200002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furlaneto-Maia, L., Rocha, K.R., Henrique, F.C., Giazzi, A., and Furlaneto, M.C. (2014b). Antimicrobial resistance in Enterococcus sp. isolated from soft cheese in Southern Brazil. Advances in Microbiology, 4: 175181. http://dx.doi.org/10.4236/aim.2014.43023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaglio, R., Couto, N., Marques, C., de Fatima, S.L.M., Moschetti, G., Pomba, C., and Settanni, L. (2016). Evaluation of antimicrobial resistance and virulence of enterococci from equipment surfaces, raw materials, and traditional cheeses. International Journal of Food Microbiology, 236: 107114. https://doi.org/10.1016/j.ijfoodmicro.2016.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammad, A.M., Aly, S.S., Hassan, H.A., Abbas, N.H., Eltahan, A., Khalifa, E., and Shimamoto, T. (2022). Occurrence, phenotypic and molecular characteristics of vancomycin-resistant enterococci isolated from retail raw milk in Egypt. Foodborne Pathogens and Disease, 19: 192198. https://doi.org/10.1089/fpd.2021.0054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maia, L.F., Giraldi, C., Terra, M.R., and Furlaneto, M.C. (2020). Vancomycin and tetracycline-resistant enterococci from from raw and processed meats: phenotypic and genotypic characteristics of isolates. Ciência Animal Brasileira/Brazilian Animal Science, 21(1). https://revistas.ufg.br/vet/article/view/57674.

    • Search Google Scholar
    • Export Citation
  • Marinho, A.R., Martins, P.D., Ditmer, E.M., d'Azevedo, P.A., Frazzon, J., Van Der Sand, S.T., and Frazzon, A.P. (2013). Biofilm formation on polystyrene under different temperatures by antibiotic resistant Enterococcus faecalis and Enterococcus faecium isolated from food. Brazilian Journal of Microbiology, 44(2): 423426. https://doi.org/10.1590/s1517-83822013005000045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meira, Q.G.S., Barbosa, I.M., Athayde, A.J.A.A., Siqueira-Júnior, J.P., and Souza, E.L. (2012). Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers. Food Control, 25: 469475. https://doi.org/10.1016/j.foodcont.2011.11.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolaev, Y.A. and Plakunov, V.K. (2007). Biofilm — “City of Microbes” or an analogue of multicellular organisms? Microbiology, 76: 125138. http://dx.doi.org/10.1134/S0026261707020014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitts, B., Hamilton, M.A., Zelver, N., and Stewart, O.S. (2003). A microtiter-plate screening method for biofilm disinfection and removal. Journal of Microbiological Methods, 54: 269276. https://doi.org/10.1016/s0167-7012(03)00034-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rather, M.A., Gupta, K., Bardhan, P., Borah, M., Sarkar, A., Eldiehy, K.S.H., Bhuyan, S., and Mandal, M.J. (2021). Microbial biofilm: a matter of grave concern for human health and food industry. Journal of Basic Microbiology, 261: 380395. https://doi.org/10.1002/jobm.202000678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, K.R., Perini, H.F., Souza, C.M., Schueler, J., Tosoni, N.F., Furlaneto, M.C., and Furlaneto-Maia, L. (2019). Inhibitory effect of bacteriocins from enterococci on developing and preformed biofilms of Listeria monocytogenes, Listeria ivanovii and Listeria innocua. World Journal of Microbiology and Biotechnology, 35: 96. https://doi.org/10.1007/s11274-019-2675-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, D.A.L., Tavares, R.M., and Nero, L.A. (2020). Interference of sanitizers, NaCl and curing salts on Listeria monocytogenes adhesion and subsequent biofilm formation. Letters in Applied Microbiology, 71: 438443. https://doi.org/10.1111/lam.13374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., and Svabic-Vlahovic, M.A. (2000). Modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40: 175179. https://doi.org/10.1016/s0167-7012(00)00122-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torlak, E., Gökmen, M., and Aydemi, S. (2015). Efficacy of disinfectants against Cronobacter biofilm on plastic surfaces. Quality Assurance and Safety of Crops & Foods, 7(5): 819823. https://doi.org/10.3920/QAS2014.0423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2023 18 0 0
May 2023 15 0 0
Jun 2023 11 0 0
Jul 2023 12 0 0
Aug 2023 7 0 0
Sep 2023 9 0 0
Oct 2023 0 0 0