Authors:
N.A. Afoakwah Department of Food Science and Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, P. O. Box 1882, Tamale, Ghana

Search for other papers by N.A. Afoakwah in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1136-5318
,
Y. Zhao School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China

Search for other papers by Y. Zhao in
Current site
Google Scholar
PubMed
Close
, and
Y. Dong School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China

Search for other papers by Y. Dong in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6800-927X
Restricted access

Abstract

Jerusalem artichoke tuber extracts (JAE) bioactivity including anticancer, antimicrobial, and digestion-inhibiting properties were investigated. The findings showed that the extracts were able to inhibit cancer growth in the HT-29 colon cancer cell line (HT-29 cc cell line) in a dose-dependent form. The suppression of cell proliferation rose to about 78.05 ± 3.9 percent at a dose of 250 μg mL−1. The Annexin V assay showed dose-dependent DNA fragmentation and detected late apoptotic induction in the HT-29 cc cell line. Depending on the concentration, the extract was able to stop the cell cycle in the HT-29 cc cell line at the G1 phase. Also, JAE prevented the HT-29 cc cell line growth, which resulted in programmed cell death. Additionally, the extracts are potential antibacterial agents and may inhibit lipase and α-amylase.

  • Abalaka, M.E., Daniyan, S.Y., Oyeleke, S.B., and Adeyemo, S.O. (2012). The antibacterial evaluation of Moringa oleifera leaf extracts on selected bacterial pathogens. Journal of Microbiology Research, 2(2): 14.

    • Search Google Scholar
    • Export Citation
  • Afoakwah, N.A. and Mahunu, G.K. (2022). Utilization of Jerusalem artichoke (Helianthus tuberosus L.) tuber as a prebiotic and a synbiotic. In: Sulieman, A.M.E. and Mariod, A.A. (Eds.), African fermented food products - New trends, Springer, pp. 525536.

    • Search Google Scholar
    • Export Citation
  • Afoakwah, N.A., Dong, Y., Zhao, Y., Xiong, Z., Owusu, J., Wang, Y., and Zhang, J. (2015). Characterization of Jerusalem artichoke (Helianthus tuberosus L.) powder and its application in emulsion-type sausage. LWT – Food Science and Technology, 64(1): 7481.

    • Search Google Scholar
    • Export Citation
  • Aslan, M, Orhan, N., Orhan, D.D., and Ergun, F. (2010). Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. Journal of Ethnopharmacolology, 128(2): 384389.

    • Search Google Scholar
    • Export Citation
  • Atef, N.M., Shanab, S.M., Negm, S.I., and Abbas, Y.A. (2019). Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. Bulletin of the National Research Centre, 43(1): 144.

    • Search Google Scholar
    • Export Citation
  • Ayua, E.O., Nkhata, S.G., Namaumbo, S.J., Kamau, E.H., Ngoma, T.N., and Aduol, K.O (2021). Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing type 2 diabetes may be reduced in food systems. Heliyon, 7(2): e06245.

    • Search Google Scholar
    • Export Citation
  • Baker, D.A.H., El-Gengaihi, S.E., Enein, A.A.H., and El-Ella., F.M.A. (2010). Biochemical study of some active ingredients in Helianthus tuberosus L. Medicinal and Aromatic Plant Science and Biotechnology, 4(1): 6668.

    • Search Google Scholar
    • Export Citation
  • Bojić, M., Maleš, Ž., Antolić, A., Babić, I., and Tomičić, M. (2019). Antithrombotic activity of flavonoids and polyphenols rich plant species. Acta Pharmaceutica, 69(4): 483495.

    • Search Google Scholar
    • Export Citation
  • Das, D.C., De, S., Battacharya, S., and Das, M. (2013). Antibacterial activity and photochemical analysis of Cardanthera difformis druce leaf extracts from West Bengal, India. International Journal of Phytomedicine, 5(4): 446451.

    • Search Google Scholar
    • Export Citation
  • Ding, S., Jiang, H., and Fang, J. (2018). Regulation of immune function by polyphenols. Journal of Immunology Research, 2018: 1264074.

  • Efenberger-Szmechtyk, M., Nowak, A., and Czyzowska, A. (2021). Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products. Critical Reviews in Food Science and Nutrition, 61(1): 149178.

    • Search Google Scholar
    • Export Citation
  • Elansary, H.O., Szopa, A., Klimek-Szczykutowicz, M., Ekiert, H., Barakat, A.A., and Al-Mana, F.A. (2020). Activities of polyphenol extracts from Ferocactus species. Processes, 8(2): 138.

    • Search Google Scholar
    • Export Citation
  • Fraternale, D., Ricci, D., Verardo, G., Gorassini, A., Stocchi, V., and Sestili, P. (2015). Activity of Vitis vinifera tendrils extract against phytopathogenic fungi. Natural Product Communications, 10(6): 10371042.

    • Search Google Scholar
    • Export Citation
  • Gonelimali, F.D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., and Hatab, S.N. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology, 9: 1639.

    • Search Google Scholar
    • Export Citation
  • Gowadia, N. and Vasudevan, T.N. (2000). Studies on effect of some medicinal plants on pancreatic lipase activity using spectrophotometric method. Asian Journal of Chemistry, 12(3): 847852.

    • Search Google Scholar
    • Export Citation
  • Greenwood, D. (1989). Antibiotic sensitivity testing. In: Greenwood, D. (Ed.), Antimicrobial chemotherapy, Oxford University Press, pp. 91100.

    • Search Google Scholar
    • Export Citation
  • Kazeem, M.I., Adamson, J.O., and Ogunwande, I.A. (2013). Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Research International, 2013: 527570.

    • Search Google Scholar
    • Export Citation
  • Long, X.H., Shao, H.B., Liu, L.P., Liu, L., and Liu, Z.P. (2016). Jerusalem artichoke: a sustainable biomass feedstock for biorefinery. Renewable and Sustainable Energy Reviews, 54: 13821388.

    • Search Google Scholar
    • Export Citation
  • Magalhães, C.M., González-Berdullas, P., Duarte, D., Correia, A.S., Rodríguez-Borges, J.E., Vale, N., Esteves da Silva, J.C.G., and Pinto da Silva, L. (2021). Target-oriented synthesis of marine coelenterazine derivatives with anticancer activity by applying the heavy-atom effect. Biomedicines, 9(9): 1199. https://doi.org/10.3390/biomedicines9091199.

    • Search Google Scholar
    • Export Citation
  • McCue, P.P. and Shetty, K. (2004). Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pacific Journal of Clinical Nutrition, 13(1): 101106.

    • Search Google Scholar
    • Export Citation
  • Mhatre, V.S., Bhagit, A.A., and Yadav, R.P. (2016). Pancreatic lipase inhibitor from food plant: potential molecule for development of safe anti-obesity drug. MGM Journal of Medical Sciences, 3(1): 3441.

    • Search Google Scholar
    • Export Citation
  • Michalska-Ciechanowska, A., Wojdyło, A., Bogucka, B., and Dubis, B. (2019). Moderation of inulin and polyphenolics contents in three cultivars of Helianthus tuberosus L. by potassium fertilization. Agronomy, 9(12): 884.

    • Search Google Scholar
    • Export Citation
  • Mostafa, A.A., Al-Askar, A.A., Almaary, K.S., Dawoud, T.M., Sholkamy, E.N., and Bakri, M.M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2): 361366. https://doi.org/10.1016/j.sjbs.2017.02.004.

    • Search Google Scholar
    • Export Citation
  • Nezbedova, L., McGhie, T., Christensen, M., Heyes, J., Nasef, N.A., and Mehta, S. (2021). Onco-preventive and chemo-protective effects of apple bioactive compounds. Nutrients, 13(11): 4025.

    • Search Google Scholar
    • Export Citation
  • Nizioł-Łukaszewska, Z., Furman-Toczek, D., and Zagórska-Dziok, M. (2018). Antioxidant activity and cytotoxicity of Jerusalem artichoke tubers and leaves extract on HaCaT and BJ fibroblast cells. Lipids in Health and Disease, 17(1): 280.

    • Search Google Scholar
    • Export Citation
  • Nowacka-Jechalke, N., Olech, M., and Nowak, R. (2018). Mushroom polyphenols as chemopreventive agents. In: Watson, R., Preedy, V., and Zibadi, S. (Eds.), Polyphenols: prevention and treatment of human disease, 2nd ed., Elsevier Inc., pp. 137150.

    • Search Google Scholar
    • Export Citation
  • Nyambe-Silavwe, H., Villa-Rodriguez, J.A., Ifie, I., Holmes, M., Aydin, E., Jensen, J.M., and Williamson, G. (2015). Inhibition of human α-amylase by dietary polyphenols. Journal of Functional Foods, Part A, 19: 723732. https://doi.org/10.1016/j.jff.2015.10.003.

    • Search Google Scholar
    • Export Citation
  • Oliviero, F., Scanu, A., Zamudio-Cuevas, Y., Punzi, L., and Spinella, P. (2018). Anti-inflammatory effects of polyphenols in arthritis. Journal of the Science of Food and Agriculture, 98(5): 16531659.

    • Search Google Scholar
    • Export Citation
  • Orhan, D.D. and Orhan, N. (2016). Assessment of in vitro antidiabetic and antioxidant effects of Helianthus tuberosus, Cydonia oblonga and Allium porrum. Turkish Journal of Pharmaceutical Science, 13(2): 181188.

    • Search Google Scholar
    • Export Citation
  • Pan, L., Sinden, M.R., Kennedy, A.H., Chai, H., Watson L.E., and Graham, T.L. (2009). Bioactive constituents of Helianthus tuberosus L. (Jerusalem artichoke). Phytochemistry Letters, 2(1): 1518.

    • Search Google Scholar
    • Export Citation
  • Panchev, I., Delchev, N., Kovacheva, D., and Slavov, A. (2011). Physicochemical characteristics of inulins obtained from Jerusalem artichoke (Helianthus tuberosus L.). European Food Research and Technology, 233(5): 889.

    • Search Google Scholar
    • Export Citation
  • Praznik, W., Cieślik, E., and Filipiak-Florkiewicz, A. (2002). Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Food/Nahrung, 46(3): 151157.

    • Search Google Scholar
    • Export Citation
  • Prpa, E.J., Bajka, B.H., Ellis, P.R., Butterworth, P.J., Corpe, C.P., and Hall, W.L. (2020). A systematic review of in vitro studies evaluating the inhibitory effects of polyphenol-rich fruit extracts on carbohydrate digestive enzymes activity: a focus on culinary fruits consumed in Europe. Critical Reviews in Food Science and Nutrition, 61(22): 37033808.

    • Search Google Scholar
    • Export Citation
  • Rahim, N.F.C., Hussin, Y., Aziz, M.N.M., Mohamad, N.E., Yeap, S.K., Masarudin, M.J., Abdullah, R., Akhtar, M.N., and Alitheen, N.B. (2021). Cytotoxicity and apoptosis effects of curcumin analogue (2E, 6E)-2, 6-Bis (2,3-Dimethoxybenzylidine) Cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro. Molecules, 26(5): 1261.

    • Search Google Scholar
    • Export Citation
  • Simonetti, G., Brasili, E., and Pasqua, A. (2020). Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules, 25(16): 3748.

    • Search Google Scholar
    • Export Citation
  • Sobeh, M., Mahmoud, M.F., Petruk, G., Rezq, S., Ashour, M.L., Youssef, F.S., El-Shazly, A.M., Monti, D.M., Abdel-Naim, A.B., and Wink, M. (2018). Syzygium aquarium: a polyphenol-rich leaf extract exhibits antioxidant, hepatoprotective, pain-killing and anti-inflammatory activities in animal models. Frontiers in Pharmacology, 9: 566.

    • Search Google Scholar
    • Export Citation
  • Socrier, L., Quéro, A., Verdu, M., Song, Y., Molinié, R., Mathiron, D., Pilard, S., Mesnard, F., and Morandat, S. (2018). Flax phenolic compounds as inhibitors of lipid oxidation: elucidation of their mechanisms of action. Food Chemistry, 274: 651658. https://doi.org/10.1016/j.foodchem.2018.08.126.

    • Search Google Scholar
    • Export Citation
  • Tchoné, M., Barwald, G., Annemuller, G., and Fleischer, L. (2006). Separation and identification of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.). Sciences des Aliments, 26(5): 394408.

    • Search Google Scholar
    • Export Citation
  • Usman, J.G., Sodipo, O.A., and Sandabe, U.K. (2014). In vitro antimicrobial activity of Cucumis metuliferus E. Mey. Ex. Naudin fruit extracts against Salmonella gallinarum. International Journal of Phytomedicine, 6(2): 268274.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., Gao, M., Xiao, H., Tan, C., and Du, Y. (2012). Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chemistry, 133(1): 1014.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., Cheng, M., Gao, M., Zhuo, R., Zhang, L. and Xiao, H. (2013). Cytotoxic constituents from the leaves of Jerusalem artichoke (Helianthus tuberosus L.) and their structure–activity relationships. Phytochemistry Letters, 6(1): 2125.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q. and Kim, H.Y. (2015). Antioxidant, anti-inflammatory and cytotoxicity on human lung epithelial A549 cells of Jerusalem artichoke (Helianthus tuberosus L.) tuber. Korean Journal of Plant Resources, 28(3): 305311.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 46 1 3
Jul 2023 28 0 0
Aug 2023 41 1 2
Sep 2023 25 0 0
Oct 2023 25 13 0
Nov 2023 24 23 0
Dec 2023 19 0 0