Jerusalem artichoke tuber extracts (JAE) bioactivity including anticancer, antimicrobial, and digestion-inhibiting properties were investigated. The findings showed that the extracts were able to inhibit cancer growth in the HT-29 colon cancer cell line (HT-29 cc cell line) in a dose-dependent form. The suppression of cell proliferation rose to about 78.05 ± 3.9 percent at a dose of 250 μg mL−1. The Annexin V assay showed dose-dependent DNA fragmentation and detected late apoptotic induction in the HT-29 cc cell line. Depending on the concentration, the extract was able to stop the cell cycle in the HT-29 cc cell line at the G1 phase. Also, JAE prevented the HT-29 cc cell line growth, which resulted in programmed cell death. Additionally, the extracts are potential antibacterial agents and may inhibit lipase and α-amylase.
Abalaka, M.E., Daniyan, S.Y., Oyeleke, S.B., and Adeyemo, S.O. (2012). The antibacterial evaluation of Moringa oleifera leaf extracts on selected bacterial pathogens. Journal of Microbiology Research, 2(2): 1–4.
Afoakwah, N.A. and Mahunu, G.K. (2022). Utilization of Jerusalem artichoke (Helianthus tuberosus L.) tuber as a prebiotic and a synbiotic. In: Sulieman, A.M.E. and Mariod, A.A. (Eds.), African fermented food products - New trends, Springer, pp. 525–536.
Afoakwah, N.A., Dong, Y., Zhao, Y., Xiong, Z., Owusu, J., Wang, Y., and Zhang, J. (2015). Characterization of Jerusalem artichoke (Helianthus tuberosus L.) powder and its application in emulsion-type sausage. LWT – Food Science and Technology, 64(1): 74–81.
Aslan, M, Orhan, N., Orhan, D.D., and Ergun, F. (2010). Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. Journal of Ethnopharmacolology, 128(2): 384–389.
Atef, N.M., Shanab, S.M., Negm, S.I., and Abbas, Y.A. (2019). Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. Bulletin of the National Research Centre, 43(1): 144.
Ayua, E.O., Nkhata, S.G., Namaumbo, S.J., Kamau, E.H., Ngoma, T.N., and Aduol, K.O (2021). Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing type 2 diabetes may be reduced in food systems. Heliyon, 7(2): e06245.
Baker, D.A.H., El-Gengaihi, S.E., Enein, A.A.H., and El-Ella., F.M.A. (2010). Biochemical study of some active ingredients in Helianthus tuberosus L. Medicinal and Aromatic Plant Science and Biotechnology, 4(1): 66–68.
Bojić, M., Maleš, Ž., Antolić, A., Babić, I., and Tomičić, M. (2019). Antithrombotic activity of flavonoids and polyphenols rich plant species. Acta Pharmaceutica, 69(4): 483–495.
Das, D.C., De, S., Battacharya, S., and Das, M. (2013). Antibacterial activity and photochemical analysis of Cardanthera difformis druce leaf extracts from West Bengal, India. International Journal of Phytomedicine, 5(4): 446–451.
Ding, S., Jiang, H., and Fang, J. (2018). Regulation of immune function by polyphenols. Journal of Immunology Research, 2018: 1264074.
Efenberger-Szmechtyk, M., Nowak, A., and Czyzowska, A. (2021). Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products. Critical Reviews in Food Science and Nutrition, 61(1): 149–178.
Elansary, H.O., Szopa, A., Klimek-Szczykutowicz, M., Ekiert, H., Barakat, A.A., and Al-Mana, F.A. (2020). Activities of polyphenol extracts from Ferocactus species. Processes, 8(2): 138.
Fraternale, D., Ricci, D., Verardo, G., Gorassini, A., Stocchi, V., and Sestili, P. (2015). Activity of Vitis vinifera tendrils extract against phytopathogenic fungi. Natural Product Communications, 10(6): 1037–1042.
Gonelimali, F.D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., and Hatab, S.N. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology, 9: 1639.
Gowadia, N. and Vasudevan, T.N. (2000). Studies on effect of some medicinal plants on pancreatic lipase activity using spectrophotometric method. Asian Journal of Chemistry, 12(3): 847–852.
Greenwood, D. (1989). Antibiotic sensitivity testing. In: Greenwood, D. (Ed.), Antimicrobial chemotherapy, Oxford University Press, pp. 91–100.
Kazeem, M.I., Adamson, J.O., and Ogunwande, I.A. (2013). Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Research International, 2013: 527570.
Long, X.H., Shao, H.B., Liu, L.P., Liu, L., and Liu, Z.P. (2016). Jerusalem artichoke: a sustainable biomass feedstock for biorefinery. Renewable and Sustainable Energy Reviews, 54: 1382–1388.
Magalhães, C.M., González-Berdullas, P., Duarte, D., Correia, A.S., Rodríguez-Borges, J.E., Vale, N., Esteves da Silva, J.C.G., and Pinto da Silva, L. (2021). Target-oriented synthesis of marine coelenterazine derivatives with anticancer activity by applying the heavy-atom effect. Biomedicines, 9(9): 1199. https://doi.org/10.3390/biomedicines9091199.
McCue, P.P. and Shetty, K. (2004). Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pacific Journal of Clinical Nutrition, 13(1): 101–106.
Mhatre, V.S., Bhagit, A.A., and Yadav, R.P. (2016). Pancreatic lipase inhibitor from food plant: potential molecule for development of safe anti-obesity drug. MGM Journal of Medical Sciences, 3(1): 34–41.
Michalska-Ciechanowska, A., Wojdyło, A., Bogucka, B., and Dubis, B. (2019). Moderation of inulin and polyphenolics contents in three cultivars of Helianthus tuberosus L. by potassium fertilization. Agronomy, 9(12): 884.
Mostafa, A.A., Al-Askar, A.A., Almaary, K.S., Dawoud, T.M., Sholkamy, E.N., and Bakri, M.M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2): 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004.
Nezbedova, L., McGhie, T., Christensen, M., Heyes, J., Nasef, N.A., and Mehta, S. (2021). Onco-preventive and chemo-protective effects of apple bioactive compounds. Nutrients, 13(11): 4025.
Nizioł-Łukaszewska, Z., Furman-Toczek, D., and Zagórska-Dziok, M. (2018). Antioxidant activity and cytotoxicity of Jerusalem artichoke tubers and leaves extract on HaCaT and BJ fibroblast cells. Lipids in Health and Disease, 17(1): 280.
Nowacka-Jechalke, N., Olech, M., and Nowak, R. (2018). Mushroom polyphenols as chemopreventive agents. In: Watson, R., Preedy, V., and Zibadi, S. (Eds.), Polyphenols: prevention and treatment of human disease, 2nd ed., Elsevier Inc., pp. 137–150.
Nyambe-Silavwe, H., Villa-Rodriguez, J.A., Ifie, I., Holmes, M., Aydin, E., Jensen, J.M., and Williamson, G. (2015). Inhibition of human α-amylase by dietary polyphenols. Journal of Functional Foods, Part A, 19: 723–732. https://doi.org/10.1016/j.jff.2015.10.003.
Oliviero, F., Scanu, A., Zamudio-Cuevas, Y., Punzi, L., and Spinella, P. (2018). Anti-inflammatory effects of polyphenols in arthritis. Journal of the Science of Food and Agriculture, 98(5): 1653–1659.
Orhan, D.D. and Orhan, N. (2016). Assessment of in vitro antidiabetic and antioxidant effects of Helianthus tuberosus, Cydonia oblonga and Allium porrum. Turkish Journal of Pharmaceutical Science, 13(2): 181–188.
Pan, L., Sinden, M.R., Kennedy, A.H., Chai, H., Watson L.E., and Graham, T.L. (2009). Bioactive constituents of Helianthus tuberosus L. (Jerusalem artichoke). Phytochemistry Letters, 2(1): 15–18.
Panchev, I., Delchev, N., Kovacheva, D., and Slavov, A. (2011). Physicochemical characteristics of inulins obtained from Jerusalem artichoke (Helianthus tuberosus L.). European Food Research and Technology, 233(5): 889.
Praznik, W., Cieślik, E., and Filipiak-Florkiewicz, A. (2002). Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Food/Nahrung, 46(3): 151–157.
Prpa, E.J., Bajka, B.H., Ellis, P.R., Butterworth, P.J., Corpe, C.P., and Hall, W.L. (2020). A systematic review of in vitro studies evaluating the inhibitory effects of polyphenol-rich fruit extracts on carbohydrate digestive enzymes activity: a focus on culinary fruits consumed in Europe. Critical Reviews in Food Science and Nutrition, 61(22): 3703–3808.
Rahim, N.F.C., Hussin, Y., Aziz, M.N.M., Mohamad, N.E., Yeap, S.K., Masarudin, M.J., Abdullah, R., Akhtar, M.N., and Alitheen, N.B. (2021). Cytotoxicity and apoptosis effects of curcumin analogue (2E, 6E)-2, 6-Bis (2,3-Dimethoxybenzylidine) Cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro. Molecules, 26(5): 1261.
Simonetti, G., Brasili, E., and Pasqua, A. (2020). Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules, 25(16): 3748.
Sobeh, M., Mahmoud, M.F., Petruk, G., Rezq, S., Ashour, M.L., Youssef, F.S., El-Shazly, A.M., Monti, D.M., Abdel-Naim, A.B., and Wink, M. (2018). Syzygium aquarium: a polyphenol-rich leaf extract exhibits antioxidant, hepatoprotective, pain-killing and anti-inflammatory activities in animal models. Frontiers in Pharmacology, 9: 566.
Socrier, L., Quéro, A., Verdu, M., Song, Y., Molinié, R., Mathiron, D., Pilard, S., Mesnard, F., and Morandat, S. (2018). Flax phenolic compounds as inhibitors of lipid oxidation: elucidation of their mechanisms of action. Food Chemistry, 274: 651–658. https://doi.org/10.1016/j.foodchem.2018.08.126.
Tchoné, M., Barwald, G., Annemuller, G., and Fleischer, L. (2006). Separation and identification of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.). Sciences des Aliments, 26(5): 394–408.
Usman, J.G., Sodipo, O.A., and Sandabe, U.K. (2014). In vitro antimicrobial activity of Cucumis metuliferus E. Mey. Ex. Naudin fruit extracts against Salmonella gallinarum. International Journal of Phytomedicine, 6(2): 268–274.
Yuan, X., Gao, M., Xiao, H., Tan, C., and Du, Y. (2012). Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chemistry, 133(1): 10–14.
Yuan, X., Cheng, M., Gao, M., Zhuo, R., Zhang, L. and Xiao, H. (2013). Cytotoxic constituents from the leaves of Jerusalem artichoke (Helianthus tuberosus L.) and their structure–activity relationships. Phytochemistry Letters, 6(1): 21–25.
Zhang, Q. and Kim, H.Y. (2015). Antioxidant, anti-inflammatory and cytotoxicity on human lung epithelial A549 cells of Jerusalem artichoke (Helianthus tuberosus L.) tuber. Korean Journal of Plant Resources, 28(3): 305–311.