Authors:
N. İnceören Chemistry Department, Faculty of Science, University of Dicle, 21280, Diyarbakır, Turkey

Search for other papers by N. İnceören in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0363-6488
,
B. Çeken Toptancı Chemistry Department, Faculty of Science, University of Dicle, 21280, Diyarbakır, Turkey

Search for other papers by B. Çeken Toptancı in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9578-3786
,
G. Kızıl Chemistry Department, Faculty of Science, University of Dicle, 21280, Diyarbakır, Turkey

Search for other papers by G. Kızıl in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9603-0631
, and
M. Kızıl Chemistry Department, Faculty of Science, University of Dicle, 21280, Diyarbakır, Turkey

Search for other papers by M. Kızıl in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3362-1797
Restricted access

Abstract

Reducing sugars are known to generate reactive oxygen species (ROS), mainly by means of the glycation reaction. The hydroxyl radical, a prominent entity of ROS, is known to alter cellular DNA and induces damage to DNA, and plays a role in diseases such as diabetes mellitus. In this study, the oxidative damage of DNA induced by the lysine/Fe3+/MG reaction was investigated. Silybum marianum seeds extract (SlyE), standard silymarin (Sly), and vitamin B6 derivatives, pyridoxal-5-phosphate (PLP), pyridoxamine (PM), and pyridoxine (P) in reversing glycation-induced damage in DNA were evaluated. In addition, different sugars and sugar phosphates were incubated with plasmid pBR 322 DNA to control and compare their harmful effects. Our results revealed that SlyE protected lysine/Fe3+/MG induced oxidative DNA damage more effectively than Sly. Vitamins, on the other hand, prevented this DNA damage in the order of PLP>P>PM. The DNA altering and damaging intensity of sugars and sugar phosphates tested increased considerably in the following order: Ribose-5-phosphate > fructose-6-phosphate > ribose > fructose > fructose-1,6 biphosphate > glucose-6 phosphate > glucose. The results show that the lysine/Fe3+/MG glycation reaction can cause oxidative damage of DNA through a mechanism involving hydroxyl radicals. It also provides evidence that ribose-5-phosphate and fructose and its phosphate metabolites can alter DNA more rapidly in vitro than glucose and its phosphate metabolites.

  • Adrover, M., Vilanova, B., Frau, J., Muñoz F., and Donoso, J. (2008). The pyridoxamine action on amadori compounds: a reexamination of its scavenging capacity and chelating effect. Bioorganic & Medicinal Chemistry, 16(10): 55575569. https://doi.org/10.1016/j.bmc.2008.04.002.

    • Search Google Scholar
    • Export Citation
  • Ahima, R.S. and Flier, J.S. (2000). Leptin. Annual Review of Physiology ,62: 413437. https://doi.org/10.1146/annurev.physiol.62.1.413.

    • Search Google Scholar
    • Export Citation
  • Ali, A., Sharma, R., and Sivakami, S. (2014). Role of natural compounds in the prevention of DNA and proteins damage by glycation. Bionano Frontier, 7(12): 2530.

    • Search Google Scholar
    • Export Citation
  • Chetykrin, S., Mathis, M.E., Ham, A.J.L., Hachey, D.L., Hudson, B.G., and Voziyan, P.V. (2008). Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine. Free Radical Biology and Medicine, 44: 12761285. https://doi.org/10.1016/j.freeradbiomed.2007.09.016.

    • Search Google Scholar
    • Export Citation
  • Degenhardt, T.P., Alderson, N.L., Arrington, D.D., Beattie, R.J., Basgen, J.M., Steffes, M.W., Thorpe, S.R., and Baynes, J.W. (2002). Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney International ,61(3): 939950. https://doi.org/10.1046/j.1523-1755.2002.00207.x.

    • Search Google Scholar
    • Export Citation
  • Dypbukt, J.M., Ankarcrona, M., Burkitt, M., Sjoholm, A., Strom, K., Orrenius, S., and Nicotera, P. (1994). Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. Journal of Biological Chemistry ,269(48): 3055330560. https://doi.org/10.1016/S0021-9258(18)43849-5.

    • Search Google Scholar
    • Export Citation
  • Elwekeel, A., Elfishawy, A., and AbouZid, S. (2013). Silymarin content in Silybum marianum fruits at different maturity stages. The Journal of Medicinal Plants ,7(23): 16651669. https://doi.org/10.5897/JMPR12.0743.

    • Search Google Scholar
    • Export Citation
  • Gemayel, R., Fortpied, J., Rzem, R., Vertommen, D., Veiga-da Cunha, M., and Van Schaftingen, E. (2007). Many fructosamine 3-kinase homologues in bacteria are ribulosamine/erythrulosamine 3-kinases potentially involved in protein deglycation. The FEBS Journal ,274(17): 43604374. https://doi.org/10.1111/j.1742-4658.2007.05948.x.

    • Search Google Scholar
    • Export Citation
  • Halliwell, B. and Gutteridge, J.M.C. (2007). Free radicals in biology and medicine. 4th ed., Oxford University Press, New York.

  • İnceören, N., Emen, S., Ceken Toptancı, B., Kızıl, G., and Kızıl, M. (2022). In vitro inhibition of advanced glycation end product formation by ethanol extract of milk thistle (Silybum marianum L.) seed. South African Journal of Botany, 149: 682692. https://doi.org/10.1016/j.sajb.2022.06.062.

    • Search Google Scholar
    • Export Citation
  • Johnson, R.J., Sanchez-Lozada, L.G., Andrews, P., and Lanaspa, M.A. (2017). A historical and scientific perspective of sugar and its relation with obesity and diabetes. Advances in Nutrition, 8(3): 412422. https://doi.org/10.3945/an.116.014654.

    • Search Google Scholar
    • Export Citation
  • Kang, J.H. (2003). Oxidative Damage of DNA by the Reaction of amino acid with methylglyoxal in the presence of Fe(III). International Journal of Biological Macromolecules ,33(1–3): 4348. https://doi.org/10.1016/s0141-8130(03)00064-3.

    • Search Google Scholar
    • Export Citation
  • Karimi, G., Vahabzadeh, M., Lari, P., Rashedinia, M., and Moshiri, M. (2011). “Silymarin”, a promising pharmacological agent for treatment of diseases. Iranian Journal of Basic Medical Sciences, 14(4): 308317.

    • Search Google Scholar
    • Export Citation
  • Kawasaki, Y., Fujii, J., Miyazawa, N., Hoshi, A., Okado, A., Tano, Y., and Taniguchi, N. (1998). Specific detections of the early process of the glycation reaction by fructose and glucose in diabetic rat lens. FEBS Letters ,441(1): 116120. https://doi.org/10.1016/s0014-5793(98)01529-4.

    • Search Google Scholar
    • Export Citation
  • Levi, B. and Werman, M.J. (2003). Fructose and related phosphate derivatives impose DNA damage and apoptosis in L5178Y mouse lymphoma cells. Journal of Nutritional Biochemistry ,14(1): 4960. https://doi.org/10.1016/s0955-2863(02)00254-1.

    • Search Google Scholar
    • Export Citation
  • Malik, V.S. and Hu, F.B. (2015). Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages tells us. Journal of the American College of Cardiology ,66(14): 16151624. https://doi.org/10.1016/j.jacc.2015.08.025.

    • Search Google Scholar
    • Export Citation
  • Negre-Salvayre, A., Salvayre, R., Augé, N., Pamplona, R., and Portero-Otín, M. (2009). Hyperglycemia and glycation in diabetic complications. Antioxidants and Redox Signaling, 11(12): 30713109. https://doi.org/10.1089/ars.2009.2484.

    • Search Google Scholar
    • Export Citation
  • Ortwerth, B.J., James, H., Simpson, G., and Linetsky, M. (1998). The generation of superoxide anions in glycation reactions with sugars, osones, and 3-deoxyosones. Biochemical and Biophysical Research Communications, 245(1): 161165. https://doi.org/10.1006/bbrc.1998.8401.

    • Search Google Scholar
    • Export Citation
  • Papoulis, A., Al-Abed, Y., and Bucala, R. (1995). Identification of N2-(1-carboxyethyl) guanine (CEG) as a guanine advanced glycosylation end product. Biochemistry, 34(2): 648655. https://doi.org/10.1021/bi00002a032.

    • Search Google Scholar
    • Export Citation
  • Schneider, M., Quistad, G.B., and Casida, J.E. (1988). N2,7-bis(1-hydroxy-2-oxopropyl)-2'-deoxyguanosine: identical noncyclic adducts with 1,3-dichloropropene epoxides and methylglyoxal. Chemical Research in Toxicology, 11(12): 15361542. https://doi.org/10.1021/tx9801256.

    • Search Google Scholar
    • Export Citation
  • Suarez, G., Rajaram, R., Oronsky, A.L., and Gawinowicz, M.A. (1989). Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. Journal of Biological Chemistry ,264(7): 36743679.

    • Search Google Scholar
    • Export Citation
  • Suji, G. and Sivakami, S. (2007). DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage. Amino Acids, 33(4): 615621. https://doi.org/10.1007/s00726-007-0498-z.

    • Search Google Scholar
    • Export Citation
  • Tayoub, G., Sulaiman, H., and Alorfi, M. (2018). Quantitative identification of total silymarin in wild Silybum marianum L. by using HPLC. International Journal of Herbal Medicine ,6(2): 110114.

    • Search Google Scholar
    • Export Citation
  • Thornalley, P.J., Langborg, A., and Minhas, H.S. (1999). Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochemical Journal ,344(1): 109116.

    • Search Google Scholar
    • Export Citation
  • Von Schonfeld, J., Weisbrod, B., and Müller, M.K. (1997). Silibinin, a plant extract with antioxidant and membrane stabilizing properties, protects exocrine pancreas from cyclosporin toxicity. Cellular and Molecular Life Sciences ,53(11–12): 917920. https://doi.org/10.1007/s000180050111.

    • Search Google Scholar
    • Export Citation
  • Waris, S., Pischetsrieder, M., and Saleemuddin, M. (2010). DNA damage by ribose: inhibition at high ribose concentration. Indian Journal of Biochemistry and Biophysics, 47(3): 148156.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 157 12 0
Jan 2024 127 5 0
Feb 2024 239 2 0
Mar 2024 24 0 0
Apr 2024 40 0 0
May 2024 19 0 0
Jun 2024 0 0 0