Authors:
M. Kumšta Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by M. Kumšta in
Current site
Google Scholar
PubMed
Close
,
T. Helmová Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by T. Helmová in
Current site
Google Scholar
PubMed
Close
,
K. Štůsková Mendeleum – Institute of Genetics, Mendel University in Brno, Valtická 334, 691 44, Lednice, Czech Republic

Search for other papers by K. Štůsková in
Current site
Google Scholar
PubMed
Close
,
M. Baroň Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by M. Baroň in
Current site
Google Scholar
PubMed
Close
,
B. Průšová Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by B. Průšová in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2582-1713
, and
J. Sochor Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by J. Sochor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study evaluated the effect of winemaking technologies on the concentration of different biogenic amines in Chardonnay wines. Wines produced from sedimented, inoculated must with active dry yeast without malolactic fermentation were compared with wine produced from nonsedimented must spontaneously fermented with malolactic fermentation. Histamine and putrescine concentrations were not significantly different in either variant. The highest concentration of histamine was 0.055 mg L−1, and the highest concentration of putrescine was 1.6 mg L−1 in both variants. Statistically significantly higher values of cadaverine (from 0.06 to 0.07 mg L−1), spermidine (from 0.8 to 1.4 mg L−1), spermine (from 0.15 to 0.25 mg L−1), and isoamylamine (from 0.40 to 0.46 mg L−1) were found in the variant made from nonsedimented must, in which spontaneous malolactic fermentation was performed. The higher concentration of biogenic amines in this variant may be due to the different composition of lactic bacteria during the spontaneous malolactic fermentation. A simplified, unpublished HILIC method of chromatographic separation of biogenic amines without prior deprivation with MS-MS detection was used to determine individual biogenic amines.

Supplementary Materials

    • Supplemental Material
  • Ailer, Š. (2016). Vinárstvo & somelierstvo. Agriprint, Olomouc. ISBN 978-80-87091-63-0.

  • Alpert, A.J. (1990). Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of Chromatography A, 499: 177196. https://doi.org/10.1016/S0021-9673(00)96972-3.

    • Search Google Scholar
    • Export Citation
  • Capozzi, V., Ladero, V., Beneduce, L., Fernández, M., Alvarez, M.A., Benoit, B., Laurent, B., Grieco, F., and Spano, G. (2011). Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiology, 28(3): 434439. https://doi.org/10.1016/j.fm.2010.10.005.

    • Search Google Scholar
    • Export Citation
  • Caruso, M., Fiore, C., Contursi, M., Salzano, G., Papaprella, A., and Romano, P. (2002). Formation of biogenic amines as criteria for the selection of wine yeasts. World Journal of Microbiology and Biotechnology, 18: 159163. https://doi.org/10.1023/A:1014451728868.

    • Search Google Scholar
    • Export Citation
  • Caude, M.J. and Jardy, A. (1998). Normal-phase liquid chromatography. In: Katz, E., Eksteen, R., Schoenmakers, P., and Miller, N. (Eds.), Handbook of HPLC. New York; Marcel Dekker, pp. 325363.

    • Search Google Scholar
    • Export Citation
  • Coton, E., Rollan, G., Bertrand, A., and Lonvaud-Funel, A. (1998). Histamine-producing lactic acid bacteria in wines: early detection, frequency, and distribution. American Journal of Enology and Viticulture, 49: 199204. https://doi.org/10.5344/ajev.1998.49.2.199.

    • Search Google Scholar
    • Export Citation
  • Daniel, D., dos Santos, V.B., Vidal, D.T.R., and do Lago, C.L. (2015). Determination of biogenic amines in beer and wine by capillary electrophoresis–tandem mass spectrometry. Journal of Chromatography A, 1416: 121128. https://doi.org/10.1016/j.chroma.2015.08.065.

    • Search Google Scholar
    • Export Citation
  • Doyle, C.A., and Dorsey, J.G. (1998): Reversed-phase HPLC: preparation and characterization of reversed-phase stationary phases. In: Katz, E., Eksteen, R., Schoenmakers, P., and Miller, N. (Eds.), Handbook of HPLC. New York; Marcel Dekker, pp. 293323.

    • Search Google Scholar
    • Export Citation
  • Garcia-Moruno, E. and Muñoz, R. (2012). Does Oenococcus oeni produce histamine? International Journal of Food Microbiology, 157(2): 121129. https://doi.org/10.1016/j.ijfoodmicro.2012.05.013.

    • Search Google Scholar
    • Export Citation
  • Garai, G., Dueñas, M.T., Irastorza, A., and Moreno-Arribas, M.V. (2007). Biogenic amine production by lactic acid bacteria isolated from cider. Letters in Applied Microbiology, 45(5): 473478. https://doi.org/10.1111/j.1472-765X.2007.02207.x.

    • Search Google Scholar
    • Export Citation
  • Gianotti, V., Chiuminatto, U., Mazzucco, E., Gosetti, F., Bottaro, M., Frascarolo, P., and Gennaro, M.C. (2008). A new hydrophilic interaction liquid chromatography tandem mass spectrometry method for the simultaneous determination of seven biogenic amines in cheese. Journal of Chromatography A, 1185: 296300. https://doi.org/10.1016/j.chroma.2008.02.038.

    • Search Google Scholar
    • Export Citation
  • Goñi, D.T. and Azpilicueta, C.A. (2001). Influence of yeast strain on biogenic amines content in wines: relationship with the utilization of amino acids during fermentation. American Journal of Enology and Viticulture, 52: 185190. https://doi.org/10.5344/ajev.2001.52.3.185.

    • Search Google Scholar
    • Export Citation
  • Guo, Y.-Y., Yang, Y.-P., Peng, Q., and Han, Y. (2015). Biogenic amines in wine: a review. International Journal of Food Science & Technology, 50(7): 15231532. https://doi.org/10.1111/ijfs.12833.

    • Search Google Scholar
    • Export Citation
  • Henríquez-Aedo, K., Durán, D., Garcia, A., Hengst, M.B., and Aranda, M. (2016). Identification of biogenic amines-producing lactic acid bacteria isolated from spontaneous malolactic fermentation of Chilean red wines. LWT - Food Science and Technology, 68: 183189. https://doi.org/10.1016/j.lwt.2015.12.003.

    • Search Google Scholar
    • Export Citation
  • Landete, J.M., Ferrer, S., Polo, L., and Pardo, I. (2005). Biogenic amines in wines from three Spanish regions. Journal of Agricultural and Food Chemistry, 53(4): 11191124. https://doi.org/10.1021/jf049340k.

    • Search Google Scholar
    • Export Citation
  • Landete, J.M., Ferrer, S., and Pardo, I. (2007). Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control, 18(12): 15691574. https://doi.org/10.1016/j.foodcont.2006.12.008.

    • Search Google Scholar
    • Export Citation
  • Lonvaud-Funel, A. (2001). Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiology Letters, 199(1): 913. https://doi.org/10.1111/j.1574-6968.2001.tb10643.x.

    • Search Google Scholar
    • Export Citation
  • Lopéz-Rituerto, E., Avenoza, A., Busto, J.H., and Peregrina, J.M. (2013). NMR Study of histidine metabolism during alcoholic and malolactic fermentations of wine and their influence on histamine production. Journal of Agricultural and Food Chemistry, 64(39): 94649469. https://doi.org/10.1021/jf402489g.

    • Search Google Scholar
    • Export Citation
  • Martín-Álvarez, P.J., Marcobal, Á., Polo, C., and Moreno-Arribas, M.V. (2006). Influence of technological practices on biogenic amine contents in red wines. European Food Research and Technology, 222: 420424. https://doi.org/10.1007/s00217-005-0142-7.

    • Search Google Scholar
    • Export Citation
  • Martínez-Pinilla, O., Guadalupe, Z., Hernández, Z., Ayestarán, B. (2013). Amino acids and biogenic amines in red varietal wines: the role of grape variety, malolactic fermentation and vintage. European Food Research and Technology, 237: 887895. https://doi.org/10.1007/s00217-013-2059-x.

    • Search Google Scholar
    • Export Citation
  • Moreno-Arribas, V., Torlois, S., Joyeux, A., Bertrand, A., and Lonvaud-Funel, A. (2000). Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine. Journal of Applied Microbiology, 88(4): 584593. https://doi.org/10.1046/j.1365-2672.2000.00997.x.

    • Search Google Scholar
    • Export Citation
  • OIV (2009). Analysis of biogenic amines in musts and wines using HPLC. Resolution OIV/OENO 346/2009.

  • OIV (2011). OIV Code of good vitivinicultural practices in order to minimise the presence of biogenic amines in vine-based products. Resolution OIV-CST 369-2011.

    • Search Google Scholar
    • Export Citation
  • Pérez-Martín, F., Seseña, S., Izquierdo, P.M., and Palop, M.L. (2014). Are Enterococcus populations present during malolactic fermentation of red wine safe? Food Microbiology, 42: 95101. https://doi.org/10.1016/j.fm.2014.03.001.

    • Search Google Scholar
    • Export Citation
  • Rizzi, A. (1998). Retention and selectivity. In: Katz, E., Eksteen, R., Schoenmakers, P., and Miller, N. (Eds.), Handbook of HPLC. New York; Marcel Dekker, pp. 154.

    • Search Google Scholar
    • Export Citation
  • Ruiz, P., Seseña, S., Izquierdo, P.M., and Palop, M.L. (2010). Bacterial biodiversity and dynamics during malolactic fermentation of Tempranillo wines as determined by a culture-independent method (PCR-DGGE). Applied Microbiology and Biotechnology, 86: 15551562. https://doi.org/10.1007/s00253-010-2492-8.

    • Search Google Scholar
    • Export Citation
  • Sagratini, G., Fernández-Franzón, M., de Berardinis, F., Font, G., Vittori, S., and Mañes, J. (2012). Simultaneous determination of eight underivatised biogenic amines in fish by solid phase extraction and liquid chromatography–tandem mass spectrometry. Food Chemistry, 132(1): 537543. https://doi.org/10.1016/j.foodchem.2011.10.054.

    • Search Google Scholar
    • Export Citation
  • Silla Santos, M.H. (1996). Biogenic amines: their importance in foods. International Journal of Food Microbiology, 29(2–3): 213231. https://doi.org/10.1016/0168–1605(95)00032-1.

    • Search Google Scholar
    • Export Citation
  • Smit, A.Y., du Toit, W., and du Toit, M. (2008). Biogenic amines in wine: understanding the headache. South African Journal for Enology and Viticulture, 29: 109127. https://doi.org/10.21548/29-2-1444.

    • Search Google Scholar
    • Export Citation
  • Smit, A.Y., du Toit, W., Stander, M.A., and du Toit, M. (2013). Evaluating the influence of maceration practices on biogenic amine formation in wine. LWT – Food Science and Technology, 53(1): 297307. https://doi.org/10.1016/j.lwt.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Tashev, K., Ivanova-Petropulos, V., and Stefova, M. (2016). Optimization and validation of a derivatization method for analysis of biogenic amines in wines using RP-HPLC-DAD. Macedonian Journal of Chemistry and Chemical Engineering, 35: 1928. https://doi.org/10.20450/mjcce.2016.884.

    • Search Google Scholar
    • Export Citation
  • Tashev, K., Ivanova-Petropulos, V., and Stefova, M. (2017). Ultra-performance liquid chromatography-triple quadruple mass spectrometry (UPLC-TQ/MS) for evaluation of biogenic amines in wine. Food Analytical Methods, 10: 40384048. https://doi.org/10.1007/s12161-017-0936-9.

    • Search Google Scholar
    • Export Citation
  • Torrea, D. and Ancín, C. (2002). Content of biogenic amines in a Chardonnay wine obtained through spontaneous and inoculated fermentations. Journal of Agricultural and Food Chemistry, 50(17): 48954899. https://doi.org/10.1021/jf011653h.

    • Search Google Scholar
    • Export Citation
  • Vidal-Carou, M.C., Ambatlle-Espunyes, A., Ulla-Ulla, M.C., and Marine-Font, A. (1990a). Histamine and tyramine in Spanish wines: their formation during the winemaking process. American Journal of Enology and Viticulture ,41: 160167. https://doi.org/10.5344/ajev.1990.41.2.160.

    • Search Google Scholar
    • Export Citation
  • Vidal-Carou, M.C., Codony-Salcedo, R., and Mariné-Font, A. (1990b). Histamine and tyramine in Spanish wines: relationships with total sulfur dioxide level, volatile acidity and malo-lactic fermentation intensity. Food Chemistry, 35: 217227. https://doi.org/10.1016/0308-8146(90)90035-3.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-Q., Ye, D.-Q., Zhu, B.-Q., Wu, G.-F., and Duan, C.-Q. (2014). Rapid HPLC analysis of amino acids and biogenic amines in wines during fermentation and evaluation of matrix effect. Food Chemistry, 163: 615. https://doi.org/10.1016/j.foodchem.2014.04.064.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 30 7 12
Jul 2023 36 2 3
Aug 2023 33 7 13
Sep 2023 40 31 60
Oct 2023 27 31 38
Nov 2023 28 25 0
Dec 2023 0 0 0