Authors:
H.J. Shi College of Fujian Chuanzheng Communications, Fuzhou, Fujian, 350007, China

Search for other papers by H.J. Shi in
Current site
Google Scholar
PubMed
Close
,
X.B. Li College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China

Search for other papers by X.B. Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0001-2263-3568
, and
Z.M. Yan College of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China

Search for other papers by Z.M. Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radio frequency (RF) heating of agri-food, especially low moisture viscous sauces (LMVS), have obvious advantages. However, uneven heating is one main problem of RF heating technology that has to be solved. Due to the unclear heating mechanism and the difficulty to measure the three-dimensional temperature distribution in the heated object, computer-aided analysis method was adopted. Based on the RF heating numerical calculation model after experimental verification and the characteristics of polyetherimide (PEI) assisted RF heating of peanut butter (PB), this study proposed an improved method for an existing protocol. Meanwhile, parameters of the new protocol were optimised by the Multi-objective Global Optimisation (MGO) of its surrogate model. Results demonstrated that the best size of PEI block in the new protocol was Φ100 × 9.5 mm and the positional height was 12 mm. When the pasteurisation temperature Tp was set to 70 °C and the control temperature Tc was set to 75 °C, the temperature uniformity evaluation indices, Over-shoot Temperature Control Index (OTCI) and Targeted Penetration Depth (TPD), were 0.920% and 3.975 mm, respectively. Compared with 4.845% and 4.940 mm before improvement, the new protocol achieved significant optimisation and improved the temperature uniformity effectively. This also proved the feasibility of MGO method of surrogate model in relevant studies.

  • Alfaifi, B., Tang, J., Jiao, Y., Wang, S., Rasco, B., Jiao, S., and Sablani, S. (2014). Radio frequency disinfestation treatments for dried fruit: model development and validation. Journal of Food Engineering, 120: 268276.

    • Search Google Scholar
    • Export Citation
  • Ballom, K., Dhowlaghar, N., Tsai, H.C., Yang, R., and Zhu, M.J. (2021). Radiofrequency pasteurization against Salmonella and Listeria monocytogenes in cocoa powder. LWT – Food Science and Technology, 145(10): 111490.

    • Search Google Scholar
    • Export Citation
  • Cui, B., Fan, R., Ran, C., Yao, Y., and Wang, Y. (2021). Improving radio frequency heating uniformity using a novel rotator for microorganism control and its effect on physiochemical properties of raisins. Innovative Food Science & Emerging Technologies, 67(1): 102564.

    • Search Google Scholar
    • Export Citation
  • Geveke, D.J., Brunkhorst, C., and Fan, X. (2007). Radio frequency electric fields processing of orange juice. Innovative Food Science & Emerging Technologies, 8(4): 549554.

    • Search Google Scholar
    • Export Citation
  • Goodridge, L.D., Willford, J., and Kalchayanand, N. (2006). Destruction of Salmonella Enteriditis inoculated onto raw almonds by high hydrostatic pressure. Food Research International, 39(4): 408412.

    • Search Google Scholar
    • Export Citation
  • Jiao, Y., Shi, H., Tang, J., Li, F., and Wang, S. (2015). Improvement of radio frequency (RF) heating uniformity on low moisture foods with polyetherimide (PEI) blocks. Food Research International, 74(8): 106114.

    • Search Google Scholar
    • Export Citation
  • Liao, M., Damayanti, W., Xu, Y., Zhao, Y., and Jiao, S. (2020). Hot air-assisted radio frequency heating for stabilization of rice bran: enzyme activity, phenolic content, antioxidant activity and microstructure. LWT – Food Science and Technology, 131: 109754.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Tang, J., Mao, Z., Mah, J.H., Jiao, S., and Wang, S. (2011). Quality and mold control of enriched white bread by combined radio frequency and hot air treatment. Journal of Food Engineering, 104(4): 492498.

    • Search Google Scholar
    • Export Citation
  • Neophytou, R.I. and Metaxas, A.C. (1998). Combined 3D FE and circuit modeling of radio frequency heating systems. Journal of Microwave Power and Electromagnetic Energy, 33(4): 243262.

    • Search Google Scholar
    • Export Citation
  • Podolak, R., Enache, E., Stone, W., Black, D.G., and Elliott, P.H. (2010). Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. Journal of Food Protection, 73(10): 19191936.

    • Search Google Scholar
    • Export Citation
  • Scott, V.N., Chen, Y., Freier, T.A., Kuehm, J., Moorman, M., Meyer, J., Morille-Hinds, T., Post, L., Smoot, L., Hood, S., Shebuski, J., and Banks, J. (2009). Control of Salmonella in low-moisture foods. I. Minimizing entry of Salmonella into a processing facility. Food Protection Trends, 29(6): 342353.

    • Search Google Scholar
    • Export Citation
  • Shi, H., Chen, H., and Yan, Z. (2021). Analysis on the effect of polyetherimide on energy distribution of radio frequency heating of viscous sauce. International Journal of Food Engineering, 17(8): 655664.

    • Search Google Scholar
    • Export Citation
  • Shi, H., Jiao, Y., Tang, J., Zhang, S., and Kuang, P. (2016). Heating uniformity evaluation and improvement of radio frequency treated prepackaged food. Transactions of the American Society of Agricultural Engineers, 59(5): 14411450.

    • Search Google Scholar
    • Export Citation
  • Tiwari, G., Wang, S., Tang, J., and Birla, S.L. (2011). Analysis of radio frequency (RF) power distribution in dry food materials. Journal of Food Engineering, 104(4): 548556.

    • Search Google Scholar
    • Export Citation
  • Verma, T., Chaves, B.D., Irmak, S., and Subbiah, J. (2021). Pasteurization of dried basil leaves using radio frequency heating: a microbial challenge study and quality analysis. Food Control, 124(2): 107932.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Li, Z., Gao, M., Tang, J., and Wang, S. (2014). Evaluating radio frequency heating uniformity using polyurethane foams. Journal of Food Engineering, 136(9): 2833.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Tang, J., Johnson, J.A., and Cavalieri, R.P. (2013). Heating uniformity and differential heating of insects in almonds associated with radio frequency energy. Journal of Stored Products Research, 55: 1520.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Yue, J., Tang, J., and Chen, B. (2005). Mathematical modelling of heating uniformity for in-shell walnuts subjected to radio frequency treatments with intermittent stirrings. Postharvest Biology and Technology, 35(1): 97107.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., Ramaswamy, H.S., and Wang, S. (2019). Computer simulation modelling, evaluation and optimisation of radio frequency (RF) heating uniformity for peanut pasteurisation process. Biosystems Engineering, 184: 101110.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE.

 

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 98 0 0
Apr 2024 30 1 1
May 2024 60 0 0
Jun 2024 90 0 0
Jul 2024 44 0 0
Aug 2024 107 0 0
Sep 2024 18 0 0