Authors:
H.J. Shi College of Fujian Chuanzheng Communications, Fuzhou, Fujian, 350007, China

Search for other papers by H.J. Shi in
Current site
Google Scholar
PubMed
Close
,
X.B. Li College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China

Search for other papers by X.B. Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0001-2263-3568
, and
Z.M. Yan College of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China

Search for other papers by Z.M. Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radio frequency (RF) heating of agri-food, especially low moisture viscous sauces (LMVS), have obvious advantages. However, uneven heating is one main problem of RF heating technology that has to be solved. Due to the unclear heating mechanism and the difficulty to measure the three-dimensional temperature distribution in the heated object, computer-aided analysis method was adopted. Based on the RF heating numerical calculation model after experimental verification and the characteristics of polyetherimide (PEI) assisted RF heating of peanut butter (PB), this study proposed an improved method for an existing protocol. Meanwhile, parameters of the new protocol were optimised by the Multi-objective Global Optimisation (MGO) of its surrogate model. Results demonstrated that the best size of PEI block in the new protocol was Φ100 × 9.5 mm and the positional height was 12 mm. When the pasteurisation temperature Tp was set to 70 °C and the control temperature Tc was set to 75 °C, the temperature uniformity evaluation indices, Over-shoot Temperature Control Index (OTCI) and Targeted Penetration Depth (TPD), were 0.920% and 3.975 mm, respectively. Compared with 4.845% and 4.940 mm before improvement, the new protocol achieved significant optimisation and improved the temperature uniformity effectively. This also proved the feasibility of MGO method of surrogate model in relevant studies.

  • Alfaifi, B., Tang, J., Jiao, Y., Wang, S., Rasco, B., Jiao, S., and Sablani, S. (2014). Radio frequency disinfestation treatments for dried fruit: model development and validation. Journal of Food Engineering, 120: 268276.

    • Search Google Scholar
    • Export Citation
  • Ballom, K., Dhowlaghar, N., Tsai, H.C., Yang, R., and Zhu, M.J. (2021). Radiofrequency pasteurization against Salmonella and Listeria monocytogenes in cocoa powder. LWT – Food Science and Technology, 145(10): 111490.

    • Search Google Scholar
    • Export Citation
  • Cui, B., Fan, R., Ran, C., Yao, Y., and Wang, Y. (2021). Improving radio frequency heating uniformity using a novel rotator for microorganism control and its effect on physiochemical properties of raisins. Innovative Food Science & Emerging Technologies, 67(1): 102564.

    • Search Google Scholar
    • Export Citation
  • Geveke, D.J., Brunkhorst, C., and Fan, X. (2007). Radio frequency electric fields processing of orange juice. Innovative Food Science & Emerging Technologies, 8(4): 549554.

    • Search Google Scholar
    • Export Citation
  • Goodridge, L.D., Willford, J., and Kalchayanand, N. (2006). Destruction of Salmonella Enteriditis inoculated onto raw almonds by high hydrostatic pressure. Food Research International, 39(4): 408412.

    • Search Google Scholar
    • Export Citation
  • Jiao, Y., Shi, H., Tang, J., Li, F., and Wang, S. (2015). Improvement of radio frequency (RF) heating uniformity on low moisture foods with polyetherimide (PEI) blocks. Food Research International, 74(8): 106114.

    • Search Google Scholar
    • Export Citation
  • Liao, M., Damayanti, W., Xu, Y., Zhao, Y., and Jiao, S. (2020). Hot air-assisted radio frequency heating for stabilization of rice bran: enzyme activity, phenolic content, antioxidant activity and microstructure. LWT – Food Science and Technology, 131: 109754.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Tang, J., Mao, Z., Mah, J.H., Jiao, S., and Wang, S. (2011). Quality and mold control of enriched white bread by combined radio frequency and hot air treatment. Journal of Food Engineering, 104(4): 492498.

    • Search Google Scholar
    • Export Citation
  • Neophytou, R.I. and Metaxas, A.C. (1998). Combined 3D FE and circuit modeling of radio frequency heating systems. Journal of Microwave Power and Electromagnetic Energy, 33(4): 243262.

    • Search Google Scholar
    • Export Citation
  • Podolak, R., Enache, E., Stone, W., Black, D.G., and Elliott, P.H. (2010). Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. Journal of Food Protection, 73(10): 19191936.

    • Search Google Scholar
    • Export Citation
  • Scott, V.N., Chen, Y., Freier, T.A., Kuehm, J., Moorman, M., Meyer, J., Morille-Hinds, T., Post, L., Smoot, L., Hood, S., Shebuski, J., and Banks, J. (2009). Control of Salmonella in low-moisture foods. I. Minimizing entry of Salmonella into a processing facility. Food Protection Trends, 29(6): 342353.

    • Search Google Scholar
    • Export Citation
  • Shi, H., Chen, H., and Yan, Z. (2021). Analysis on the effect of polyetherimide on energy distribution of radio frequency heating of viscous sauce. International Journal of Food Engineering, 17(8): 655664.

    • Search Google Scholar
    • Export Citation
  • Shi, H., Jiao, Y., Tang, J., Zhang, S., and Kuang, P. (2016). Heating uniformity evaluation and improvement of radio frequency treated prepackaged food. Transactions of the American Society of Agricultural Engineers, 59(5): 14411450.

    • Search Google Scholar
    • Export Citation
  • Tiwari, G., Wang, S., Tang, J., and Birla, S.L. (2011). Analysis of radio frequency (RF) power distribution in dry food materials. Journal of Food Engineering, 104(4): 548556.

    • Search Google Scholar
    • Export Citation
  • Verma, T., Chaves, B.D., Irmak, S., and Subbiah, J. (2021). Pasteurization of dried basil leaves using radio frequency heating: a microbial challenge study and quality analysis. Food Control, 124(2): 107932.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Li, Z., Gao, M., Tang, J., and Wang, S. (2014). Evaluating radio frequency heating uniformity using polyurethane foams. Journal of Food Engineering, 136(9): 2833.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Tang, J., Johnson, J.A., and Cavalieri, R.P. (2013). Heating uniformity and differential heating of insects in almonds associated with radio frequency energy. Journal of Stored Products Research, 55: 1520.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Yue, J., Tang, J., and Chen, B. (2005). Mathematical modelling of heating uniformity for in-shell walnuts subjected to radio frequency treatments with intermittent stirrings. Postharvest Biology and Technology, 35(1): 97107.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., Ramaswamy, H.S., and Wang, S. (2019). Computer simulation modelling, evaluation and optimisation of radio frequency (RF) heating uniformity for peanut pasteurisation process. Biosystems Engineering, 184: 101110.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 60 8 12
Jul 2023 20 3 3
Aug 2023 77 8 12
Sep 2023 33 33 62
Oct 2023 30 42 38
Nov 2023 24 17 0
Dec 2023 42 0 0