Authors:
M. Kulhankova Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by M. Kulhankova in
Current site
Google Scholar
PubMed
Close
,
B. Prusova Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by B. Prusova in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2582-1713
,
J. Licek Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by J. Licek in
Current site
Google Scholar
PubMed
Close
,
M. Kumsta Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by M. Kumsta in
Current site
Google Scholar
PubMed
Close
, and
M. Baron Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by M. Baron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Oxygen plays a crucial role in all stages of wine production. The aim of this study was to quantify dissolved oxygen in filtered wines trained on fine lees during different technological operations such as racking, coarse filtration, stabilisation of thermolabile proteins, and sterile filtration and bottling. The most significant oxygenation of wine occurs during filtration (1.9–3.57 mg L−1) and during bottling (2.99–4.12 mg L−1). At the same time, oxygen affects the phenolic composition, antioxidant activity and sulphur dioxide.

Understanding and being able to use oxygen correctly during wine production can lead to a reduction in the doses of sulphur dioxide used. It has been shown that wines trained on fine lees are more able to withstand oxygen and, therefore, the sulphur dioxide doses can be reduced substantially. The experiment, in which two different winemaking technologies were observed, was carried out on the Welschriesling variety using both stainless steel tanks and oak barrels.

  • Ailer, Š., Jakabová, S., Benešová, L., and Ivanova-Petropulos, V. (2022). Wine faults: state of knowledge in reductive aromas, oxidation and atypical aging, prevention, and correction methods. Molecules, 27(11): 3535.

    • Search Google Scholar
    • Export Citation
  • Ailer, Š., Serenčeš, R., Kozelová, D., Poláková, Z., and Jakabová, S. (2021). Possibilities for depleting the content of undesirable volatile phenolic compounds in white wine with the use of low-intervention and economically efficient grape processing technology. Applied Sciences, 11(15): 6735.

    • Search Google Scholar
    • Export Citation
  • Ailer, Š., Valšíková, M., Jedlička, J., Mankovecký, J., and Baroň, M. (2020). Influence of sugar and ethanol content and color of wines on the sensory evaluation: from wine competition “Nemčiňany Wine Days” in Slovak Republic (2013–2016). Erwerbs-Obstbau, 62: 916.

    • Search Google Scholar
    • Export Citation
  • Carrascón, V., Bueno, M., Fernandez-Zurbano, P., and Ferreira, V. (2017). Oxygen and SO2 consumption rates in white and rosé wines: relationship with and effects on wine chemical composition. Journal of Agricultural and Food Chemistry, 65(43): 94889495. https://doi.org/10.1021/acs.jafc.7b02762.

    • Search Google Scholar
    • Export Citation
  • Castellari, M., Simonato, B., Tornielli, G.B., Spinelli, P., and Ferrarini, R. (2004). Effects of different enological treatments on dissolved oxygen in wines. Italian Journal of Food Science, 16: 387396.

    • Search Google Scholar
    • Export Citation
  • Catarino, A., Alves, S., and Mira, H. (2014). Influence of technological operations in the dissolved oxygen content of wines. Journal of Chemistry and Chemical Engineering, 8: 390394. https://doi.org/10.17265/1934-7375%2F2014.04.010.

    • Search Google Scholar
    • Export Citation
  • Danilewicz, J.C. (2013). Reactions involving iron in mediating catechol oxidation in model wine. American Journal of Enology and Viticulture, 64(3): 316324. https://doi.org/10.5344/ajev.2013.12137.

    • Search Google Scholar
    • Export Citation
  • Du Toit, W., Marais, J., Pretorius, I., and Du Toit, M. (2006). Oxygen in must and wine: a review. South African Journal of Enology and Viticulture, 27(1): 7694. https://doi.org/10.21548/27-1-1610.

    • Search Google Scholar
    • Export Citation
  • Fornairon-Bonnefond, C. and Salmon, J.-M. (2003). Impact of oxygen consumption by yeast lees on the autolysis phenomenon during simulation of wine aging on lees. Journal of Agricultural and Food Chemistry, 51(9): 25842590. https://doi.org/10.1021/jf0259819.

    • Search Google Scholar
    • Export Citation
  • Karbowiak, T., Gougeon, R.D., Alinc, J.B., Brachais, L., Debeaufort, F., Voilley, A., and Chassagne, D. (2010). Wine oxidation and the role of cork. Critical Reviews on Food Science and Nutrition, 50(1): 2052. https://doi.org/10.1080/10408398.2010.526854.

    • Search Google Scholar
    • Export Citation
  • P300andP6000 Nomasense O2 (2018). Wine quality solutions. Vinventions WQS, https://www.winequalitysolutions.com/assets/d946b04d-44f3-42d2-a395-9b234c00528d/sellsheet-wqs-nomasenseo2p300-p6000-en.pdf.

    • Search Google Scholar
    • Export Citation
  • Pérez-Serradilla, J. and De Castro, M.L. (2008). Role of lees in wine production: a review. Food Chemistry, 111(2): 447456. https://doi.org/10.1016/j.foodchem.2008.04.019.

    • Search Google Scholar
    • Export Citation
  • Pokrývková, J., Jedlička, J., Chlebo, P., and Jurík, L. (2020). The use of a targeted must oxygenation method in the process of developing the archival potential of natural wine. Applied Sciences, 10(14): 4810. https://doi.org/10.3390/app10144810.

    • Search Google Scholar
    • Export Citation
  • Prusova, B. and Baron, M. (2018). Effect of controlled micro-oxygenation on white wine. Ciência e Técnica Vitivinícola, 33(1): 7889. https://doi.org/10.1051/ctv/20183301078.

    • Search Google Scholar
    • Export Citation
  • Pulido, R., Bravo, L., and Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48(8): 33963402. https://doi.org/10.1021/jf9913458.

    • Search Google Scholar
    • Export Citation
  • Schneider, V., Muller, J., and Schmidt, D. (2016). Oxygen consumption by postfermentation wine yeast lees: factors affecting its rate and extent under oenological conditions. Food Technology and Biotechnology, 54(4): 395402. https://doi.org/10.17113/ftb.54.04.16.4651.

    • Search Google Scholar
    • Export Citation
  • Singleton, V. (1988). Wine phenols. In: Liskens, H.F. and Jackson, J.F. (Eds.) Wine analysis. Springer Verlag Berlin, pp. 173218.

  • Sochor, J., Jurikova, T., Pohanka, M., Skutkova, H., Baron, M., Tomaskova, L., Balla, S., Klejdus, B., Pokluda, R., Mlcek, J., Trojakova, Z., and Saloun, J. (2014). Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis. Molecules, 19(5): 65046523. https://doi.org/10.3390/molecules19056504.

    • Search Google Scholar
    • Export Citation
  • Sochorova, L., Prusova, B., Jurikova, T., Mlcek, J., Adamkova, A., Baron, M., and Sochor, J. (2020). The study of antioxidant components in grape seeds. Molecules, 25(16): 3736. https://doi.org/10.3390/molecules25163736.

    • Search Google Scholar
    • Export Citation
  • Tarko, T., Duda-Chodak, A., Sroka, P., and Siuta, M. (2020). The impact of oxygen at various stages of vinification on the chemical composition and the antioxidant and sensory properties of white and red wines. International Journal of Food Science, 2020: 7902974. https://doi.org/10.1155/2020/7902974.

    • Search Google Scholar
    • Export Citation
  • Valade, M., Tribaut-Sohier, I., Bunner, D., Pierlot, C., Moncomble, D., and Tusseau, D. (2006). Les apports d'oxygene en vinification et leurs impacts sur les vins. Le Vigneron Champenois, 127(9): 6095.

    • Search Google Scholar
    • Export Citation
  • Vasserot, Y., Caillet, S., and Maujean, A. (1997). Study of anthocyanin adsorption by yeast lees. Effect of some physicochemical parameters. American Journal of Enology and Viticulture, 48(4), 433437. https://doi.org/10.5344/ajev.1997.48.4.433.

    • Search Google Scholar
    • Export Citation
  • Vidal, J.-C., Dufourcq, T., Boulet, J.C., and Moutounet, M. (2001). Les apports d’oxygène au cours des traitements des vins. Bilan des observations sur site. 1ère partie. Revue Française d’ Œnologie ,190.

    • Search Google Scholar
    • Export Citation
  • Vivas, N., Debeda, H., Menil, F., Vivas de Gaulejac, N., and Nonier, M. (2003). Mise en évidence du passage de l'oxygène au travers des douelles constituant les barriques par l'utilisation d'un dispositif original de mesure de la porosité du bois. Premiers résultats. Sciences des Aliments, 23(5–6): 655678. http://dx.doi.org/10.3166/sda.23.655-678.

    • Search Google Scholar
    • Export Citation
  • Walls, J.R. (2020). Effect of oxygen managment on white wine composition .Stellenbosch: Stellenbosch University, Master Thesis.

  • Waterman, P.G. and Mole, S. (1994). Analysis of phenolic plant metabolites. Blackwell Scientific Publishers, Oxford, 248 pages.

  • Wine Business (2019). Wine quality solutions launches the NomaSense™ Oxymeter. https://www.winebusiness.com/news/vendor/article/221422.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 450 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 200 1 1
Nov 2024 87 0 0
Dec 2024 51 0 0
Jan 2025 81 0 0
Feb 2025 92 0 0
Mar 2025 56 0 0
Apr 2025 0 0 0