Oxygen plays a crucial role in all stages of wine production. The aim of this study was to quantify dissolved oxygen in filtered wines trained on fine lees during different technological operations such as racking, coarse filtration, stabilisation of thermolabile proteins, and sterile filtration and bottling. The most significant oxygenation of wine occurs during filtration (1.9–3.57 mg L−1) and during bottling (2.99–4.12 mg L−1). At the same time, oxygen affects the phenolic composition, antioxidant activity and sulphur dioxide.
Understanding and being able to use oxygen correctly during wine production can lead to a reduction in the doses of sulphur dioxide used. It has been shown that wines trained on fine lees are more able to withstand oxygen and, therefore, the sulphur dioxide doses can be reduced substantially. The experiment, in which two different winemaking technologies were observed, was carried out on the Welschriesling variety using both stainless steel tanks and oak barrels.
Ailer, Š., Jakabová, S., Benešová, L., and Ivanova-Petropulos, V. (2022). Wine faults: state of knowledge in reductive aromas, oxidation and atypical aging, prevention, and correction methods. Molecules, 27(11): 3535.
Ailer, Š., Serenčeš, R., Kozelová, D., Poláková, Z., and Jakabová, S. (2021). Possibilities for depleting the content of undesirable volatile phenolic compounds in white wine with the use of low-intervention and economically efficient grape processing technology. Applied Sciences, 11(15): 6735.
Ailer, Š., Valšíková, M., Jedlička, J., Mankovecký, J., and Baroň, M. (2020). Influence of sugar and ethanol content and color of wines on the sensory evaluation: from wine competition “Nemčiňany Wine Days” in Slovak Republic (2013–2016). Erwerbs-Obstbau, 62: 9–16.
Carrascón, V., Bueno, M., Fernandez-Zurbano, P., and Ferreira, V. (2017). Oxygen and SO2 consumption rates in white and rosé wines: relationship with and effects on wine chemical composition. Journal of Agricultural and Food Chemistry, 65(43): 9488–9495. https://doi.org/10.1021/acs.jafc.7b02762.
Castellari, M., Simonato, B., Tornielli, G.B., Spinelli, P., and Ferrarini, R. (2004). Effects of different enological treatments on dissolved oxygen in wines. Italian Journal of Food Science, 16: 387–396.
Catarino, A., Alves, S., and Mira, H. (2014). Influence of technological operations in the dissolved oxygen content of wines. Journal of Chemistry and Chemical Engineering, 8: 390–394. https://doi.org/10.17265/1934-7375%2F2014.04.010.
Danilewicz, J.C. (2013). Reactions involving iron in mediating catechol oxidation in model wine. American Journal of Enology and Viticulture, 64(3): 316–324. https://doi.org/10.5344/ajev.2013.12137.
Du Toit, W., Marais, J., Pretorius, I., and Du Toit, M. (2006). Oxygen in must and wine: a review. South African Journal of Enology and Viticulture, 27(1): 76–94. https://doi.org/10.21548/27-1-1610.
Fornairon-Bonnefond, C. and Salmon, J.-M. (2003). Impact of oxygen consumption by yeast lees on the autolysis phenomenon during simulation of wine aging on lees. Journal of Agricultural and Food Chemistry, 51(9): 2584–2590. https://doi.org/10.1021/jf0259819.
Karbowiak, T., Gougeon, R.D., Alinc, J.B., Brachais, L., Debeaufort, F., Voilley, A., and Chassagne, D. (2010). Wine oxidation and the role of cork. Critical Reviews on Food Science and Nutrition, 50(1): 20–52. https://doi.org/10.1080/10408398.2010.526854.
P300andP6000 Nomasense O2 (2018). Wine quality solutions. Vinventions WQS, https://www.winequalitysolutions.com/assets/d946b04d-44f3-42d2-a395-9b234c00528d/sellsheet-wqs-nomasenseo2p300-p6000-en.pdf.
Pérez-Serradilla, J. and De Castro, M.L. (2008). Role of lees in wine production: a review. Food Chemistry, 111(2): 447–456. https://doi.org/10.1016/j.foodchem.2008.04.019.
Pokrývková, J., Jedlička, J., Chlebo, P., and Jurík, L. (2020). The use of a targeted must oxygenation method in the process of developing the archival potential of natural wine. Applied Sciences, 10(14): 4810. https://doi.org/10.3390/app10144810.
Prusova, B. and Baron, M. (2018). Effect of controlled micro-oxygenation on white wine. Ciência e Técnica Vitivinícola, 33(1): 78–89. https://doi.org/10.1051/ctv/20183301078.
Pulido, R., Bravo, L., and Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48(8): 3396–3402. https://doi.org/10.1021/jf9913458.
Schneider, V., Muller, J., and Schmidt, D. (2016). Oxygen consumption by postfermentation wine yeast lees: factors affecting its rate and extent under oenological conditions. Food Technology and Biotechnology, 54(4): 395–402. https://doi.org/10.17113/ftb.54.04.16.4651.
Singleton, V. (1988). Wine phenols. In: Liskens, H.F. and Jackson, J.F. (Eds.) Wine analysis. Springer Verlag Berlin, pp. 173–218.
Sochor, J., Jurikova, T., Pohanka, M., Skutkova, H., Baron, M., Tomaskova, L., Balla, S., Klejdus, B., Pokluda, R., Mlcek, J., Trojakova, Z., and Saloun, J. (2014). Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis. Molecules, 19(5): 6504–6523. https://doi.org/10.3390/molecules19056504.
Sochorova, L., Prusova, B., Jurikova, T., Mlcek, J., Adamkova, A., Baron, M., and Sochor, J. (2020). The study of antioxidant components in grape seeds. Molecules, 25(16): 3736. https://doi.org/10.3390/molecules25163736.
Tarko, T., Duda-Chodak, A., Sroka, P., and Siuta, M. (2020). The impact of oxygen at various stages of vinification on the chemical composition and the antioxidant and sensory properties of white and red wines. International Journal of Food Science, 2020: 7902974. https://doi.org/10.1155/2020/7902974.
Valade, M., Tribaut-Sohier, I., Bunner, D., Pierlot, C., Moncomble, D., and Tusseau, D. (2006). Les apports d'oxygene en vinification et leurs impacts sur les vins. Le Vigneron Champenois, 127(9): 60–95.
Vasserot, Y., Caillet, S., and Maujean, A. (1997). Study of anthocyanin adsorption by yeast lees. Effect of some physicochemical parameters. American Journal of Enology and Viticulture, 48(4), 433–437. https://doi.org/10.5344/ajev.1997.48.4.433.
Vidal, J.-C., Dufourcq, T., Boulet, J.C., and Moutounet, M. (2001). Les apports d’oxygène au cours des traitements des vins. Bilan des observations sur site. 1ère partie. Revue Française d’ Œnologie ,190.
Vivas, N., Debeda, H., Menil, F., Vivas de Gaulejac, N., and Nonier, M. (2003). Mise en évidence du passage de l'oxygène au travers des douelles constituant les barriques par l'utilisation d'un dispositif original de mesure de la porosité du bois. Premiers résultats. Sciences des Aliments, 23(5–6): 655–678. http://dx.doi.org/10.3166/sda.23.655-678.
Walls, J.R. (2020). Effect of oxygen managment on white wine composition .Stellenbosch: Stellenbosch University, Master Thesis.
Waterman, P.G. and Mole, S. (1994). Analysis of phenolic plant metabolites. Blackwell Scientific Publishers, Oxford, 248 pages.
Wine Business (2019). Wine quality solutions launches the NomaSense™ Oxymeter. https://www.winebusiness.com/news/vendor/article/221422.