Authors:
M. Kulhankova Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by M. Kulhankova in
Current site
Google Scholar
PubMed
Close
,
B. Prusova Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by B. Prusova in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2582-1713
,
J. Licek Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by J. Licek in
Current site
Google Scholar
PubMed
Close
,
M. Kumsta Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by M. Kumsta in
Current site
Google Scholar
PubMed
Close
, and
M. Baron Department of Viticulture and Enology, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic

Search for other papers by M. Baron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Oxygen plays a crucial role in all stages of wine production. The aim of this study was to quantify dissolved oxygen in filtered wines trained on fine lees during different technological operations such as racking, coarse filtration, stabilisation of thermolabile proteins, and sterile filtration and bottling. The most significant oxygenation of wine occurs during filtration (1.9–3.57 mg L−1) and during bottling (2.99–4.12 mg L−1). At the same time, oxygen affects the phenolic composition, antioxidant activity and sulphur dioxide.

Understanding and being able to use oxygen correctly during wine production can lead to a reduction in the doses of sulphur dioxide used. It has been shown that wines trained on fine lees are more able to withstand oxygen and, therefore, the sulphur dioxide doses can be reduced substantially. The experiment, in which two different winemaking technologies were observed, was carried out on the Welschriesling variety using both stainless steel tanks and oak barrels.

  • Ailer, Š., Jakabová, S., Benešová, L., and Ivanova-Petropulos, V. (2022). Wine faults: state of knowledge in reductive aromas, oxidation and atypical aging, prevention, and correction methods. Molecules, 27(11): 3535.

    • Search Google Scholar
    • Export Citation
  • Ailer, Š., Serenčeš, R., Kozelová, D., Poláková, Z., and Jakabová, S. (2021). Possibilities for depleting the content of undesirable volatile phenolic compounds in white wine with the use of low-intervention and economically efficient grape processing technology. Applied Sciences, 11(15): 6735.

    • Search Google Scholar
    • Export Citation
  • Ailer, Š., Valšíková, M., Jedlička, J., Mankovecký, J., and Baroň, M. (2020). Influence of sugar and ethanol content and color of wines on the sensory evaluation: from wine competition “Nemčiňany Wine Days” in Slovak Republic (2013–2016). Erwerbs-Obstbau, 62: 916.

    • Search Google Scholar
    • Export Citation
  • Carrascón, V., Bueno, M., Fernandez-Zurbano, P., and Ferreira, V. (2017). Oxygen and SO2 consumption rates in white and rosé wines: relationship with and effects on wine chemical composition. Journal of Agricultural and Food Chemistry, 65(43): 94889495. https://doi.org/10.1021/acs.jafc.7b02762.

    • Search Google Scholar
    • Export Citation
  • Castellari, M., Simonato, B., Tornielli, G.B., Spinelli, P., and Ferrarini, R. (2004). Effects of different enological treatments on dissolved oxygen in wines. Italian Journal of Food Science, 16: 387396.

    • Search Google Scholar
    • Export Citation
  • Catarino, A., Alves, S., and Mira, H. (2014). Influence of technological operations in the dissolved oxygen content of wines. Journal of Chemistry and Chemical Engineering, 8: 390394. https://doi.org/10.17265/1934-7375%2F2014.04.010.

    • Search Google Scholar
    • Export Citation
  • Danilewicz, J.C. (2013). Reactions involving iron in mediating catechol oxidation in model wine. American Journal of Enology and Viticulture, 64(3): 316324. https://doi.org/10.5344/ajev.2013.12137.

    • Search Google Scholar
    • Export Citation
  • Du Toit, W., Marais, J., Pretorius, I., and Du Toit, M. (2006). Oxygen in must and wine: a review. South African Journal of Enology and Viticulture, 27(1): 7694. https://doi.org/10.21548/27-1-1610.

    • Search Google Scholar
    • Export Citation
  • Fornairon-Bonnefond, C. and Salmon, J.-M. (2003). Impact of oxygen consumption by yeast lees on the autolysis phenomenon during simulation of wine aging on lees. Journal of Agricultural and Food Chemistry, 51(9): 25842590. https://doi.org/10.1021/jf0259819.

    • Search Google Scholar
    • Export Citation
  • Karbowiak, T., Gougeon, R.D., Alinc, J.B., Brachais, L., Debeaufort, F., Voilley, A., and Chassagne, D. (2010). Wine oxidation and the role of cork. Critical Reviews on Food Science and Nutrition, 50(1): 2052. https://doi.org/10.1080/10408398.2010.526854.

    • Search Google Scholar
    • Export Citation
  • P300andP6000 Nomasense O2 (2018). Wine quality solutions. Vinventions WQS, https://www.winequalitysolutions.com/assets/d946b04d-44f3-42d2-a395-9b234c00528d/sellsheet-wqs-nomasenseo2p300-p6000-en.pdf.

    • Search Google Scholar
    • Export Citation
  • Pérez-Serradilla, J. and De Castro, M.L. (2008). Role of lees in wine production: a review. Food Chemistry, 111(2): 447456. https://doi.org/10.1016/j.foodchem.2008.04.019.

    • Search Google Scholar
    • Export Citation
  • Pokrývková, J., Jedlička, J., Chlebo, P., and Jurík, L. (2020). The use of a targeted must oxygenation method in the process of developing the archival potential of natural wine. Applied Sciences, 10(14): 4810. https://doi.org/10.3390/app10144810.

    • Search Google Scholar
    • Export Citation
  • Prusova, B. and Baron, M. (2018). Effect of controlled micro-oxygenation on white wine. Ciência e Técnica Vitivinícola, 33(1): 7889. https://doi.org/10.1051/ctv/20183301078.

    • Search Google Scholar
    • Export Citation
  • Pulido, R., Bravo, L., and Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48(8): 33963402. https://doi.org/10.1021/jf9913458.

    • Search Google Scholar
    • Export Citation
  • Schneider, V., Muller, J., and Schmidt, D. (2016). Oxygen consumption by postfermentation wine yeast lees: factors affecting its rate and extent under oenological conditions. Food Technology and Biotechnology, 54(4): 395402. https://doi.org/10.17113/ftb.54.04.16.4651.

    • Search Google Scholar
    • Export Citation
  • Singleton, V. (1988). Wine phenols. In: Liskens, H.F. and Jackson, J.F. (Eds.) Wine analysis. Springer Verlag Berlin, pp. 173218.

  • Sochor, J., Jurikova, T., Pohanka, M., Skutkova, H., Baron, M., Tomaskova, L., Balla, S., Klejdus, B., Pokluda, R., Mlcek, J., Trojakova, Z., and Saloun, J. (2014). Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis. Molecules, 19(5): 65046523. https://doi.org/10.3390/molecules19056504.

    • Search Google Scholar
    • Export Citation
  • Sochorova, L., Prusova, B., Jurikova, T., Mlcek, J., Adamkova, A., Baron, M., and Sochor, J. (2020). The study of antioxidant components in grape seeds. Molecules, 25(16): 3736. https://doi.org/10.3390/molecules25163736.

    • Search Google Scholar
    • Export Citation
  • Tarko, T., Duda-Chodak, A., Sroka, P., and Siuta, M. (2020). The impact of oxygen at various stages of vinification on the chemical composition and the antioxidant and sensory properties of white and red wines. International Journal of Food Science, 2020: 7902974. https://doi.org/10.1155/2020/7902974.

    • Search Google Scholar
    • Export Citation
  • Valade, M., Tribaut-Sohier, I., Bunner, D., Pierlot, C., Moncomble, D., and Tusseau, D. (2006). Les apports d'oxygene en vinification et leurs impacts sur les vins. Le Vigneron Champenois, 127(9): 6095.

    • Search Google Scholar
    • Export Citation
  • Vasserot, Y., Caillet, S., and Maujean, A. (1997). Study of anthocyanin adsorption by yeast lees. Effect of some physicochemical parameters. American Journal of Enology and Viticulture, 48(4), 433437. https://doi.org/10.5344/ajev.1997.48.4.433.

    • Search Google Scholar
    • Export Citation
  • Vidal, J.-C., Dufourcq, T., Boulet, J.C., and Moutounet, M. (2001). Les apports d’oxygène au cours des traitements des vins. Bilan des observations sur site. 1ère partie. Revue Française d’ Œnologie ,190.

    • Search Google Scholar
    • Export Citation
  • Vivas, N., Debeda, H., Menil, F., Vivas de Gaulejac, N., and Nonier, M. (2003). Mise en évidence du passage de l'oxygène au travers des douelles constituant les barriques par l'utilisation d'un dispositif original de mesure de la porosité du bois. Premiers résultats. Sciences des Aliments, 23(5–6): 655678. http://dx.doi.org/10.3166/sda.23.655-678.

    • Search Google Scholar
    • Export Citation
  • Walls, J.R. (2020). Effect of oxygen managment on white wine composition .Stellenbosch: Stellenbosch University, Master Thesis.

  • Waterman, P.G. and Mole, S. (1994). Analysis of phenolic plant metabolites. Blackwell Scientific Publishers, Oxford, 248 pages.

  • Wine Business (2019). Wine quality solutions launches the NomaSense™ Oxymeter. https://www.winebusiness.com/news/vendor/article/221422.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 80 4 9
Jul 2023 45 3 5
Aug 2023 56 6 11
Sep 2023 44 30 60
Oct 2023 28 37 38
Nov 2023 29 22 3
Dec 2023 15 2 0