Authors:
W.J. Zhang College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China

Search for other papers by W.J. Zhang in
Current site
Google Scholar
PubMed
Close
,
X.X. Zheng College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China

Search for other papers by X.X. Zheng in
Current site
Google Scholar
PubMed
Close
,
X.J. Tian School of Food and Wine, Ningxia University, Yinchuan, 750021, China

Search for other papers by X.J. Tian in
Current site
Google Scholar
PubMed
Close
,
Y.Y. Li College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China

Search for other papers by Y.Y. Li in
Current site
Google Scholar
PubMed
Close
, and
J. Wang College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China

Search for other papers by J. Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8764-2994
Restricted access

Abstract

Measurement of phenolics, colour parameters, and volatile compounds in wines were made from two varieties of table grapes (‘Zaoheibao’ and ‘Summer Black’) using five pretreatment methods (cold maceration, freezing grapes, lower maturity, fermenting grape juice without skin, and adding tartaric acid) and a control treatment. The effect of the pretreatment methods on the quality of wines was assessed using oenological parameters analysis and volatile compounds analysis. The results indicated that the freezing grape and cold maceration pretreatments improved the colour and increased the contents of phenolic and volatile compounds compared with the control, and freezing was considered to be the most suitable pretreatment method for ‘Zaoheibao’ wine. With respect to ‘Summer Black’ wines, cold maceration and lower maturity were considered to be suitable. Cold maceration enhanced the contents of phenolic and volatile compounds, while lower maturity increased the contents of volatile compounds and total acid. Our results provide new insights into the use of table grapes to make different styles of wine.

  • Aith Barbará, J., Primieri Nicolli, K., Souza-Silva, É.A., Camarão Telles Biasoto, A., Welke, J.E., and Alcaraz Zini, C. (2020). Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. Food Chemistry, 308: 125552. https://doi.org/10.1016/j.foodchem.2019.125552.

    • Search Google Scholar
    • Export Citation
  • Benucci, I. (2020). Impact of post-bottling storage conditions on colour and sensory profile of a rosé sparkling wine. LWT – Food Science and Technology ,118: 108732. https://doi.org/10.1016/j.lwt.2019.108732.

    • Search Google Scholar
    • Export Citation
  • Boyles, M.J. and Wrolstad, R.E. (1993). Anthocyanin composition of red raspberry juice: influences of cultivar, processing, and environmental factors. Journal of Food Science, 58(5): 11351141. https://doi.org/10.1111/j.1365-2621.1993.tb06132.x.

    • Search Google Scholar
    • Export Citation
  • Casassa, L.F., Bolcato, E.A., Sari, S.E., Fanzone, M.L., and Jofré, V.P. (2016). Combined effect of prefermentative cold soak and SO2 additions in Barbera D'Asti and Malbec wines: anthocyanin composition, chromatic and sensory properties. LWT – Food Science and Technology, 66: 134142. https://doi.org/10.1016/j.lwt.2015.10.026.

    • Search Google Scholar
    • Export Citation
  • Coelho, E., Rocha, S.M., Barros, A.S., Delgadillo, I., and Coimbra, M.A. (2007). Screening of variety- and pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile. Analytica Chimica Acta, 597(2): 257264. https://doi.org/10.1016/j.aca.2007.07.010.

    • Search Google Scholar
    • Export Citation
  • Deng, Q., Penner, M.H., and Zhao, Y. (2011). Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Research International, 44(9): 27122720. https://doi.org/10.1016/j.foodres.2011.05.026.

    • Search Google Scholar
    • Export Citation
  • Duan, G., Liu, Y., Lv, H., Wu, F., and Wang, R. (2020). Optimization of “Zaoheibao” wine fermentation process and analysis of aroma substances. Biotechnology & Biotechnological Equipment, 34(1): 10561064. https://doi.org/10.1080/13102818.2020.1818621.

    • Search Google Scholar
    • Export Citation
  • Gordillo, B., López-Infante, M.I., Ramírez-Pérez, P., González-Miret, M.L., and Heredia, F.J. (2010). Influence of prefermentative cold maceration on the color and anthocyanic copigmentation of organic Tempranillo wines elaborated in a warm climate. Journal of Agricultural and Food Chemistry, 58(11): 67976803. https://doi.org/10.1021/jf100084x.

    • Search Google Scholar
    • Export Citation
  • Harbertson, J.F., Kennedy, J.A., and Adams, D.O. (2002). Tannin in skins and seeds of Cabernet Sauvignon, Syrah, and Pinot noir berries during ripening. American Journal of Enology and Viticulture, 53: 5459. https://doi.org/10.5344/ajev.2002.53.1.54.

    • Search Google Scholar
    • Export Citation
  • Huang, J., Wang, Y., Ren, Y., Wang, X., Li, H., Liu, Z., Yue, T., and Gao, Z. (2022). Effect of inoculation method on the quality and nutritional characteristics of low-alcohol kiwi wine. LWT – Food Science and Technology, 156: 113049. https://doi.org/10.1016/j.lwt.2021.113049.

    • Search Google Scholar
    • Export Citation
  • Jin, Z.-X., Sun, T.-Y., Sun, H., Yue, Q.-Y., and Yao, Y.-X. (2016). Modifications of ‘Summer Black’ grape berry quality as affected by the different rootstocks. Scientia Horticulturae, 210: 130137. https://doi.org/10.1016/j.scienta.2016.07.023.

    • Search Google Scholar
    • Export Citation
  • Kim, D.-O., Chun, O.K., Kim, Y.J., Moon, H-Y., and Lee, C.Y. (2003). Quantification of polyphenolics and their antioxidant capacity in fresh plums. Journal of Agricultural and Food Chemistry, 51(22): 65096515. https://doi.org/10.1021/jf0343074.

    • Search Google Scholar
    • Export Citation
  • Lago-Vanzela, E.S., Procopio, D.P., Fontes, E.A.F., Ramos, A.M., Stringheta, P.C., Da Silva, R., Castillo-Muñoz, N., and Hermosín-Gutiérrez, I. (2014). Aging of red wines made from hybrid grape cv. BRS Violeta: effects of accelerated aging conditions on phenolic composition, color and antioxidant activity. Food Research International, 56: 182189. https://doi.org/10.1016/j.foodres.2013.12.030.

    • Search Google Scholar
    • Export Citation
  • Li, H., Tao, Y.-S., Wang, H., and Zhang, L. (2007). Impact odorants of Chardonnay dry white wine from Changli County (China). European Food Research and Technology, 227(1): 287292. https://doi.org/10.1007/s00217-007-0722-9.

    • Search Google Scholar
    • Export Citation
  • Moreno-Perez, A., Vila-Lopez, R., Fernandez-Fernandez, J.I., Martinez-Cutillas, A., and Gil-Munoz, R. (2013). Influence of cold pre-fermentation treatments on the major volatile compounds of three wine varieties. Food Chemistry, 139(1–4): 770776. https://doi.org/10.1016/j.foodchem.2013.01.052.

    • Search Google Scholar
    • Export Citation
  • Noguerol-Pato, R., Gonzalez-Alvarez, M., Gonzalez-Barreiro, C., Cancho-Grande, B., and Simal-Gandara, J. (2012). Aroma profile of Garnacha Tintorera-based sweet wines by chromatographic and sensorial analyses. Food Chemistry, 134(4): 23132325. https://doi.org/10.1016/j.foodchem.2012.03.105.

    • Search Google Scholar
    • Export Citation
  • Paixao, N., Perestrelo, R., Marques, J., and Camara, J. (2007). Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chemistry, 105(1): 204214. https://doi.org/10.1016/j.foodchem.2007.04.017.

    • Search Google Scholar
    • Export Citation
  • Peinado, R.A., Mauricio, J.C., and Moreno, J. (2006). Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. capensis. Food Chemistry, 94(2): 232239. https://doi.org/10.1016/j.foodchem.2004.11.010.

    • Search Google Scholar
    • Export Citation
  • Rajkovic, M. and Sredović Ignjatović, I. (2009). The determination of titratable acidity and total tannins in red wine. Journal of Agricultural Sciences, Belgrade, 54: 223246. https://doi.org/10.2298/JAS0903223R.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Rodriguez, A., Duran-Guerrero, E., Natera, R., Palma, M., and Barroso, C.G. (2020). Influence of two different cryoextraction procedures on the quality of wine produced from Muscat grapes. Foods, 9(11): 1529. https://doi.org/10.3390/foods9111529.

    • Search Google Scholar
    • Export Citation
  • Sáenz-Navajas, M.-P., Avizcuri, J.M., Echávarri, J.F., Ferreira, V., Fernández-Zurbano, P., and Valentin, D. (2016). Understanding quality judgements of red wines by experts: effect of evaluation condition. Food Quality and Preference, 48: 216227. https://doi.org/10.1016/j.foodqual.2015.10.001.

    • Search Google Scholar
    • Export Citation
  • Tao, Y., Li, H., Wang, H., and Zhang, L. (2008). Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China). Journal of Food Composition and Analysis, 21(8): 689694. https://doi.org/10.1016/j.jfca.2008.05.007.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Huo, S., Zhang, Y., Liu, Y., and Fan, W. (2016). Impact of various maceration techniques on the phenolic and volatile composition of Chenin Blanc wines. International Journal of Food Science & Technology, 51(11): 23602366. https://doi.org/10.1111/ijfs.13215.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 61 6 10
Jul 2023 30 0 0
Aug 2023 35 6 11
Sep 2023 30 31 62
Oct 2023 25 44 38
Nov 2023 27 21 0
Dec 2023 24 1 0