In this study, 25–25 milk samples (25 colostral and 25 mature) collected at different lactational stages were used to analyse the fatty acid composition of breast milk. A gas-chromatographic method was used to perform and analyse the transmethylation of total milk lipid extracts. The milk samples contained 20 different fatty acids. Palmitic acid (C16:0), stearic acid (C18:0), myristic acid (C14:0), oleic acid (C18:1n-9), and linoleic acid (LA, C18:2n-6) were the major components of total lipid, phospholipid (PL), and triacylglycerol (TAG) fractions. Colostrum had a lower percentage of polyunsaturated fatty acids (PUFAs), a higher percentage of saturated fatty acids (SFAs), and a lower level of eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3) in total lipid than mature milk. Triacylglycerol and PL fractions between colostrum and mature milk samples did not differ statistically.
Al-Tamer, Y.Y. and Mahmood, A.A. (2004). Fatty-acid composition of the colostrum and serum of fullterm and preterm delivering Iraqi mothers. European Journal of Clinical Nutrition, 58(8): 1119–1124. https://doi.org/10.1038/sj.ejcn.1601939.
Argov-Argaman, N., Mandel, D. Lubetzky, R. Hausman-Kedem, M., Cohen, B.C., Berkovitz, Z., and Reifen, R. (2016). Human milk fatty acids composition is affected by maternal age. The Journal of Maternal-Fetal and Neonatal Medicine, 30(1): 1–16. https://doi.org/10.3109/14767058.2016.1140142.
Chen, Y.J., Zhou, X.H., Han, B., Yu, Z., Yi, H.X., Jiang, S.L., Li, Y.Y., Pan, J.C., and Zhang, L.W. (2020). Regioisomeric and enantiomeric analysis of primary triglycerides in human milk by silver ion and chiral HPLC atmospheric pressure chemical ionization-MS. Journal of Dairy Science, 103(9): 7761–7774. https://doi.org/10.3168/jds.2019–17353.
de la Presa-Owens, S., López-Sabater, M.C., and Rivero-Urgell, M. (1996). Fatty acid composition of human milk in Spain. Journal of Pediatric Gasrtoenterology and Nutrition, 22(2): 180–185. https://doi.org/10.1097/00005176-199602000-00009.
Floris, L., Stahl, B., Abrahamse-Berkeveld, M., and Teller, I. (2020). Human milk fatty acid profile across lactational stages after term and preterm delivery: a pooled data analysis. Prostaglandins, Leukotrienes and Essential Fatty Acids, 156: 102023. https://doi.org/10.1016/j.plefa.2019.102023.
Fok, D., Aris, I.M., Ho, J., Lim, S.B., Chua, M.C., Pang, W.W., Saw, S.-M., Kwek, K., Godfrey, K.M., Kramer, M.S., and Chong, Y.S. (2016). A comparison of practices during the confinement period among Chinese, Malay, and Indian mothers in Singapore. Birth, 43(3): 247–254. https://doi.org/10.1111/birt.12233.
Glew, R.H., Huang, Y-S., VanderJagt, T.A., Chuang, L-T., Bhatt, S.K., Magnussen M.A., and VanderJagt, D.J. (2001). Fatty acid composition of the milk lipids of Nepalese women: correlation between fatty acid composition of serum phospholipids and melting point. Prostaglandins Leukotrienes and Essential Fatty Acids, 65(3): 147–156. https://doi.org/10.1054/plef.2001.0303.
Harris, W.S., Connor, W.E., and Lindsey, S. (1984). Will dietary omega-3 fatty acids change the composition of human milk? The American Journal of Clinical Nutrition, 40(4): 780–785. https://doi.org/10.1093/ajcn/40.4.780.
Hayat, L., Al-Sughayer, M.A., and Afzal, M. (1999). Fatty acid composition of human milk in Kuwaiti mothers. Comparative Biochemistry and Physiology Part B, Biochemistry and Molecular Biology, 124(3): 261–267. https://doi.org/10.1016/s0305-0491(99)00112-1.
Innis, S.M. (2014). Impact of maternal diet on human milk composition and neurological development of infants. The American Journal of Clinical Nutrition, 99: 734S–741S doi.org/10.3945/ajcn.113.072595.
Jensen, R.G. (1999). Lipids in human milk. Lipids, 34: 1243–1271. https://doi.org/10.1007/s11745-999-0477-2.
Knox, E., VanderJagt, D.J., Shatima, D., Huang, Y.-S., Chuang, L.-T., and Glew, R.H. (2000). Nutritional status and intermediate chain-length fatty acids influence the conservation of essential fatty acids in the milk of northern Nigerian women. Prostaglandins, Leukotrienes and Essential Fatty Acids, 63(4): 195–202. https://doi.org/10.1054/plef.2000.0206.
Lubetzky, R., Zaidenberg, G., Mimouni, B.F., Dollberg, S., Shimoni, E., Ungar, Y., and Mandel, D. (2012). Human milk fatty acids profile changes during prolonged lactation: a cross-sectional study. The Israel Medical Association Journal, 14(1): 7–10.
Mihályi, K., Györei, E., Szabó, É., Marosvölgyi, T., Lohner, S., and Decsi, T. (2015). Contribution of n-3 long-chain polyunsaturated fatty acids to human milk is still low in Hungarian mothers. European Journal of Pediatrics, 174(3): 393–398. https://doi.org/10.1007/s00431-014-2411-6.
Sala-Vila, A., Castellote, A.I., Rodriquez-Palmero, M., Campoy, C., and Lopez-Sabater, M.C. (2005). Lipid composition in human breast milk from Granada (Spain): changes during lactation. Nutrition, 21(7): 467–473. https://doi.org/10.1016/j.nut.2004.08.020.
Schmeits, B.L., Cook, J.A., VanderJagt, D.J., Magnussen, M.A., Bhatt, S.K., Bobik E.G., Huang, Y.S., and Glew, R.H. (1999). Fatty acid composition of the milk lipids of women in Nepal. Nutrition Research, 19(9): 1339–1348. https://doi.org/10.1016/S0271-5317(99)00091-3.
Silva, M.H.L., Silva, M.T.C., Brandão, S.C.C., Gomes, J.C., Peternelli, L.A., and Franceschini, S.C.C. (2005). Fatty acid composition of mature breast milk in Brazilian women. Food Chemistry, 93(2): 297–303. https://doi.org/10.1016/j.foodchem.2004.09.026.
Stanley-Samuelson, D.W. and Dadd, R.H. (1983). Long-chain polyunsaturated fatty acids: patterns of occurrence in insects. Insect Biochemistry, 13(5): 549–558. https://doi.org/10.1016/0020-1790(83)90014-8.
VanderJagt, D.J., Arnet, C.D., Okolo, S.N., Huang, Y-S., Chuang, L.T., and Glew, R.H. (2000). Fatty acid composition of the milk lipids of Fulani women and the serum phospholipids of their exclusively breast fed infants. Early Human Development, 60(2): 73–87. https://doi.org/10.1016/s0378-3782(00)00111-0.
Yuan, T., Qi C, Dai, X., Xia, Y., Sun, C., Sun, J., Yu, R., Zhou, Q., Jin, Q., Wei, W., and Wang, X. (2019). Triacylglycerol composition of breast milk during different lactation stages. Journal of Agricultural and Food Chemistry, 67: 2272–2278. https://doi.org/10.1021/acs.jafc.8b06554.
Zhang, M., Simon-Sarkadi, L., Üveges, M., Tormási, J., Benes, E., Vass, R.A., and Vari, S.G. (2022). Gas chromatographic determination of fatty acid composition in breast milk of mothers with different health conditions. Acta Alimentaria, 51(4): 625–635. https://doi.org/10.1556/066.2022.00120.
Zhao, P., Zhang, S., Liu, L., Pang, X., Yang, Y., Lu, J., and Lv, J. (2018). Differences in the triacylglycerol and fatty acid compositions of human colostrum and mature milk. Journal of Agricultural and Food Chemistry, 66: 4571–4579. https://doi.org/10.1021/acs.jafc.8b00868.
Zhu, H., Liang, A., Wang, X., Zhang, W., Zhang, Y., He, X., Liu, Y., Jiang, S., Lu, J., and Lv, J. (2021). Comparative analysis of triglycerides from different regions and mature lactation periods in Chinese Human Milk Project (CHMP) Study. Frontiers in Nutrition, 8: 798821. https://doi.org/10.3389/fnut.2021.798821.