Authors:
B. Dalgıç Department of Biology, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye

Search for other papers by B. Dalgıç in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0056-7755
and
N. Demir Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye

Search for other papers by N. Demir in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2347-8344
Restricted access

Abstract

Synthesis of nanoparticles can be long and costly processes using physical and chemical methods. Biological synthesis of nanoparticles is known to be cheaper and easier than other methods. In this study, silver nanoparticles (AgNP) were obtained by biological synthesis, also known as green synthesis, using Sorghum bicolor var. technicum (Körn) Stapf ex Holland seed extract, popularly known as sorghum. AgNPs were characterised by SEM, EDS, TEM, FT-IR, and UV-Vis Spectroscopy. SEM images confirmed that the shape of AgNPs was spherical. TEM analysis showed that the average sizes of AgNPs ranged from 51 to 56 nm. EDS analysis confirmed the presence of AgNPs by detecting a silver ion peak at 3 KeV. UV-Vis spectroscopy analyses indicated that the brown-burgundy colour of AgNPs exhibited maximum absorbance at 450 nm. The biological activities of the extract and AgNPs were investigated through antimicrobial, antibiofilm, antioxidant, mutagenic, and DNA cleavage activity analyses. The extract exhibited the highest MIC value against Gram-positive bacterium Bacillus subtilis (0.62 μg mL−1), whereas AgNPs demonstrated the highest antimicrobial activity specifically against Gram-negative bacterium Escherichia coli (0.31 μg mL−1). The antibiofilm results revealed that the extract displayed the highest percentage of biofilm inhibition against B. subtilis, while AgNPs exhibited notable efficacy against both Candida albicans yeast and Pseudomonas aeruginosa bacterium. The antioxidant activities were evaluated using DPPH and ABTS•+ methods, and it was determined that both samples had high antioxidant activity. Mutagenicity of the extract and AgNPs were evaluated by the Ames/Salmonella test using two strains of Salmonella typhimurium (TA98 and TA100). The mutagenic activity of the extract increased depending on the concentration for both strains, while AgNP did not show mutagenicity at any concentration. The agarose gel electrophoresis method showed that the extract and AgNPs cleaved DNA in the presence of an oxidising agent.

  • Ai, J., Biazar, E., Jafarpour, M., Montazeri, M., Majdi, A., Aminifard, S., Zafari, M., Akbari, H.R., and Rad, H.G. (2011). Nanotoxicology and nanoparticle safety in biomedical designs. International Journal of Nanomedicine, 6: 11171127.

    • Search Google Scholar
    • Export Citation
  • Althwab, S., Carr, T.P., Weller, C.L., Dweikat, I.M., and Schlegel, V. (2015). Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Research International, 77(3): 349359.

    • Search Google Scholar
    • Export Citation
  • Azizi, S., Mohamad, R., Rahim, R.A., Mohammadinejad, R., and Ariff, A.B. (2017). Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. International Journal of Biological Macromolecules, 104(Pt A): 423431.

    • Search Google Scholar
    • Export Citation
  • Bhardwaj, B., Singh, P., Kumar, A., Kumar, S., and Budhwar, V. (2020). Eco-friendly greener synthesis of nanoparticles. Advanced Pharmaceutical Bulletin, 10(4): 566576.

    • Search Google Scholar
    • Export Citation
  • Blois, M.S. (1958). Antioxidant determinations by the use of a free free radical. Nature, 181: 11991200.

  • Chung, I.M., Kim, E.H., Yeo, M.A., Kim, S.J., Seo, M.C., and Moon, H.I. (2011). Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Research International, 44(1): 127132.

    • Search Google Scholar
    • Export Citation
  • CLSI, (2006). Clinical and Laboratory Standards Institute methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard M07-A7, CLSI, 7th ed., PA, USA.

    • Search Google Scholar
    • Export Citation
  • de Cássia Proença-Assunção, J., Constantino, E., Farias-de-França, A.P., Nogueira, F.A.R., Consonni, S.R., Chaud, M.V., dos Santos, C.A., and Oshima-Franco, Y. (2021). Mutagenicity of silver nanoparticles synthesized with curcumin (Cur-AgNPs). Journal of Saudi Chemical Society, 25(9): 101321.

    • Search Google Scholar
    • Export Citation
  • Fafal, T., Taştan, P., Tüzün, B.S., Ozyazici, M., and Kivcak, B. (2017). Synthesis, characterisation and studies on antioxidant activity of silver nanoparticles using Asphodelus aestivus Brot. aerial part extract. South African Journal of Botany, 112: 346353.

    • Search Google Scholar
    • Export Citation
  • Gilaki, M. (2010). Retracted: biosynthesis of silver nanoparticles using plant extracts. Journal of Biological Sciences, 10(5): 465467.

    • Search Google Scholar
    • Export Citation
  • Iravani, S. (2011) Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10): 26382650.

  • Iyabo, O.O., Ibiyinka, O., and Deola, O.A. (2018). Comparative study of nutritional, functional and antinutritional properties of white Sorghum bicolor (sorghum) and Pennisetum glaucum (pearl millet). International Journal of Engineering Technologies and Management Research, 5(3): 151158.

    • Search Google Scholar
    • Export Citation
  • Kalaiselvi, A., Roopan, S.M., Madhumitha, G., Ramalingam, C., and Elango, G. (2015). Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135: 116119.

    • Search Google Scholar
    • Export Citation
  • Kumar, P.V., Pammi, S.V.N., Kollu, P., Satyanarayana, K.V.V., and Shameem, U. (2014). Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Industrial Crops and Products, 52: 562566.

    • Search Google Scholar
    • Export Citation
  • Maron, D.M. and Ames, B.N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects, 113(3–4): 173215.

    • Search Google Scholar
    • Export Citation
  • Merritt, J.H., Kadouri, D.E., and O'Toole, G.A. (2005). Growing and analyzing static biofilms. Current Protocols in Microbiology, Chapter 1: Unit 1B-1.

    • Search Google Scholar
    • Export Citation
  • Mortelmans, K. and Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 455(1–2): 2960.

    • Search Google Scholar
    • Export Citation
  • Narayanan, K.B. and Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156(1–2): 113.

    • Search Google Scholar
    • Export Citation
  • Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., and Fernig, D.G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, 139(19): 48554861.

    • Search Google Scholar
    • Export Citation
  • Parvanak Boroujeni, K., Farokhnia, A., Shahrokh, M., and Mobini, M. (2018). Investigation of catalytic, anti-bacterial, anti-oxidant, and DNA cleavage properties of bimetallic and trimetallic magnetic nanoalloys base on cupper. Inorganic and Nano-Metal Chemistry, 48(11): 521529.

    • Search Google Scholar
    • Export Citation
  • Patil, M.P. and Kim, G.D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied Microbiology and Biotechnology, 101(1): 7992.

    • Search Google Scholar
    • Export Citation
  • Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., and Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific Journal of Tropical Biomedicine, 2(7): 574580.

    • Search Google Scholar
    • Export Citation
  • Przybylska-Balcerek, A., Frankowski, J., and Stuper-Szablewska, K. (2019). Bioactive compounds in sorghumEuropean Food Research and Technology, 245(5): 10751080.

    • Search Google Scholar
    • Export Citation
  • Ramalingam, V., Rajaram, R., PremKumar, C., Santhanam, P., Dhinesh, P., Vinothkumar, S., and Kaleshkumar, K. (2014). Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. Journal of Basic Microbiology, 54(9): 928936.

    • Search Google Scholar
    • Export Citation
  • Rao, S., Santhakumar, A.B., Chinkwo, K.A., Wu, G., Johnson, S.K., and Blanchard, C.L. (2018). Characterization of phenolic compounds and antioxidant activity in sorghum grains. Journal of Cereal Science, 84: 103111.

    • Search Google Scholar
    • Export Citation
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10): 12311237.

    • Search Google Scholar
    • Export Citation
  • Russo, A., Izzo, A.A., Cardile, V., Borrelli, F., and Vanella, A. (2001). Indian medicinal plants as antiradicals and DNA cleavage protectors. Phytomedicine, 8(2): 125132.

    • Search Google Scholar
    • Export Citation
  • Shreyash, N., Bajpai, S., Khan, M.A., Vijay, Y., Tiwary, S.K., and Sonker, M. (2021). Green synthesis of nanoparticles and their biomedical applications: a review. ACS Applied Nano Materials, 4(11): 1142811457.

    • Search Google Scholar
    • Export Citation
  • Sreedevi, A., Manasa, G.L., Divya, B., Shipa, C., and Sruthi, K.S. (2020). Eco-friendly synthesis of silver nanoparticles using seeds of Sorghum bicolor. Research Journal of Pharmacy and Technology, 13(12): 59355938.

    • Search Google Scholar
    • Export Citation
  • Tippayawat, P., Phromviyo, N., Boueroy, P., and Chompoosor, A. (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ, 4: e2589.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Chinnathambi, A., Nasif, O., and Alharbi, S.A. (2021). Green synthesis and chemical characterization of a novel anti-human pancreatic cancer supplement by silver nanoparticles containing Zingiber officinale leaf aqueous extract. Arabian Journal of Chemistry, 14(4): 103081.

    • Search Google Scholar
    • Export Citation
  • Yaqoob, A.A., Umar, K., and Ibrahim, M.N.M. (2020). Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications – a review. Applied Nanoscience, 10(5): 13691378.

    • Search Google Scholar
    • Export Citation
  • Yassin, M.T., Mostafa, A.A.F., Al-Askar, A.A., and Al-Otibi, F.O. (2022). Synergistic antifungal efficiency of biogenic silver nanoparticles with itraconazole against multidrug-resistant candidal strains. Crystals, 12(6): 816.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: András SALGÓ

Co-ordinating Editor(s): 

Marianna TÓTH-MARKUS

Co-editor(s): 

Anna HALÁSZ

Editorial Board

  • László ABRANKÓ (Hungarian University of Agriculture and Life Sciences, Budapest, Hungary)
  • Tamás ANTAL (University of Nyíregyháza, Nyíregyháza, Hungary)
  • Diána BÁNÁTI (University of Szeged, Szeged, Hungary)
  • József BARANYI (Institute of Food Research, Norwich, UK)
  • Ildikó BATA-VIDÁCS (Eszterházy Károly Catholic University, Eger, Hungary)
  • Ferenc BÉKÉS (FBFD PTY LTD, Sydney, NSW Australia)
  • György BIRÓ (Budapest, Hungary)
  • Anna BLÁZOVICS (Semmelweis University, Budapest, Hungary)
  • Francesco CAPOZZI (University of Bologna, Bologna, Italy)
  • Marina CARCEA (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zsuzsanna CSERHALMI (Budapest, Hungary)
  • Marco DALLA ROSA (University of Bologna, Bologna, Italy)
  • István DALMANDI (Hungarian University of Agriculture and Life Sciences, Budapest, Hungary)
  • Katarina DEMNEROVA (University of Chemistry and Technology, Prague, Czech Republic)
  • Mária DOBOZI KING (Texas A&M University, Texas, USA)
  • Muying DU (Southwest University in Chongqing, Chongqing, China)
  • Sedef Nehir EL (Ege University, Izmir, Turkey)
  • Søren Balling ENGELSEN (University of Copenhagen, Copenhagen, Denmark)
  • Éva GELENCSÉR (Budapest, Hungary)
  • Vicente Manuel GÓMEZ-LÓPEZ (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • Jovica HARDI (University of Osijek, Osijek, Croatia)
  • Hongju HE (Henan Institute of Science and Technology, Xinxiang, China)
  • Károly HÉBERGER (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • Nebojsa ILIĆ (University of Novi Sad, Novi Sad, Serbia)
  • Dietrich KNORR (Technische Universität Berlin, Berlin, Germany)
  • Hamit KÖKSEL (Hacettepe University, Ankara, Turkey)
  • Katia LIBURDI (Tuscia University, Viterbo, Italy
  • Meinolf LINDHAUER (Max Rubner Institute, Detmold, Germany)
  • Min-Tze LIONG (Universiti Sains Malaysia, Penang, Malaysia)
  • Marena MANLEY (Stellenbosch University, Stellenbosch, South Africa)
  • Miklós MÉZES (Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary)
  • Áron NÉMETH (Budapest University of Technology and Economics, Budapest, Hungary)
  • Perry NG (Michigan State University,  Michigan, USA)
  • Quang Duc NGUYEN (Hungarian University of Agriculture and Life Sciences, Budapest, Hungary)
  • Laura NYSTRÖM (ETH Zürich, Switzerland)
  • Lola PEREZ (University of Cordoba, Cordoba, Spain)
  • Vieno PIIRONEN (University of Helsinki, Finland)
  • Alessandra PINO (University of Catania, Catania, Italy)
  • Mojmir RYCHTERA (University of Chemistry and Technology, Prague, Czech Republic
  • Katharina SCHERF (Technical University, Munich, Germany)
  • Regine SCHÖNLECHNER (University of Natural Resources and Life Sciences, Vienna, Austria)
  • Arun Kumar SHARMA (Department of Atomic Energy, Delhi, India)
  • András SZARKA (Budapest University of Technology and Economics, Budapest, Hungary)
  • Mária SZEITZNÉ SZABÓ (Budapest, Hungary)
  • Sándor TÖMÖSKÖZI (Budapest University of Technology and Economics, Budapest, Hungary)
  • László VARGA (Széchenyi István University, Mosonmagyaróvár, Hungary)
  • Rimantas VENSKUTONIS (Kaunas University of Technology, Kaunas, Lithuania)
  • Barbara WRÓBLEWSKA (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.226
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 450 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 91 0 0
Jan 2025 93 0 0
Feb 2025 149 0 0
Mar 2025 167 0 0
Apr 2025 44 0 0
May 2025 10 0 0
Jun 2025 0 0 0