Author:
Q.Q. Yuan College of Agriculture and Bioengineering, Heze University, 2269 University Road, Shandong, 274000, China

Search for other papers by Q.Q. Yuan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article presents an analysis of the impact of blanching and Ginkgo biloba extract (GBE) on the volatile organic compounds (VOCs) in Cantonese bacon using gas chromatography-ion mobility spectrometry (GC-IMS). The study aims to investigate how different processing techniques influence the composition of volatile compounds in meat products, thereby contributing to the understanding of flavour release patterns.

The experiment involved dividing pork belly into six groups: conventional (C), heat treatment (H, 50 °C, 15 s), high-temperature treatment (S, 80 °C, 5 s), conventional treatment with GBE (CG, 0.5% GBE), heat composite treatment with GBE (HG, 50 °C, 15 s, 0.5% GBE), and high-temperature heat composite treatment with GBE (SG, 80 °C, 15 s, 0.5% GBE). The researchers identified a total of 36 compounds in the GC-IMS spectrum. The results showed that the ethanol content decreased in the H group samples after blanching treatment, while it increased in the S group samples. The CG, H, HG, and SG groups exhibited more significant changes compared to the C group. The H group had the highest number of VOCs among all the groups. Additionally, the flavour of the H, CG, and HG group products was notably enhanced.

In conclusion, GC-IMS allows for real-time visual analysis of VOCs, and both blanching treatment and the addition of GBE significantly affect the composition of VOCs in the samples.

Supplementary Materials

    • Supplemental Material
  • Aliaño-González, M., Ferreiro-González, M., Barbero, G., Palma, M., and Barroso, C. (2018). Application of headspace gas chromatography-Ion mobility spectrometry for the determination of ignitable liquids from fire debris. Separations, 5(3): 4146. https://doi.org/10.3390/separations5030041.

    • Search Google Scholar
    • Export Citation
  • Arroyo-Manzanares, N., Martín-Gómez, A., Jurado-Campos, N., Garrido-Delgado, R., Arce, C., and Arce, L. (2017). Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace-gas chromatography-ion mobility spectrometry. Food Chemistry ,246: 6573. https://doi.org/10.1016/j.foodchem.2017.11.008.

    • Search Google Scholar
    • Export Citation
  • Bak, K.H., Waehrens, S.S., Fu, Y., Chow, C.Y., Petersen, M.A., Ruiz-Carrascal, J., Bredie, W.L.P., and Lametsch, R. (2021). Flavor characterization of animal hydrolysates and potential of glucosamine in flavor modulation. Foods, 10: 3008. https://doi.org/10.3390/foods10123008.

    • Search Google Scholar
    • Export Citation
  • Birolo, M., Trocino, A., Zuffellato, A., and Xiccato, G. (2020). Time-based feed restriction and group composition in growing rabbits: effects on feed intake pattern, growth performance, carcass traits and meat quality. Livestock Science, 239: 104086. https://doi.org/10.1016/j.livsci.2020.104086.

    • Search Google Scholar
    • Export Citation
  • Cavanna, D., Zanardi, S., Dall'Asta, C., and Suman, M. (2018). Ion mobility spectrometry coupled to gas chromatography: a rapid tool to assess eggs freshness. Food Chemistry, 271: 691696. https://doi.org/10.1016/j.foodchem.2018.07.204.

    • Search Google Scholar
    • Export Citation
  • Delgado-Suárez, E.J., Lozano, R.M.S., López, T.V.M., Urrutia, T.G.R., and Leidenz, H.N. (2016). Quality traits of pork semimembranosus and triceps brachii muscles sourced from the United States and Mexico. Meat Science, 122: 125131. https://doi.org/10.1016/j.meatsci.2016.07.025.

    • Search Google Scholar
    • Export Citation
  • Eiceman, G.A. and Karpas, Z. (2010). Ion mobility spectrometry, 2nd ed. CRC Press, Boca Raton, p. 368. https://books/10.1201/9781420038972.fmatt.

    • Search Google Scholar
    • Export Citation
  • García-Torres, S., López-Gajardo, A., and Mesías, F.J. (2016). Intensive vs. freerange organic beef. A preference study through consumer liking and conjoint analysis. Meat Science, 114: 114120. https://doi.org/10.1016/j.meatsci.2015.12.019.

    • Search Google Scholar
    • Export Citation
  • Gómez, I., Beriain, M.J., Sarriés, M.V., Insausti, K., and Mendizabal, J.A. (2014). Low-fat beef patties with augmented omega-3 fatty acid and CLA levels and influence of grape seed extract. Journal of Food Science, 79(11): S23682S2376. https://doi.org/10.1111/1750-3841.12682.

    • Search Google Scholar
    • Export Citation
  • Latoch, A., Głuchowski, A., and Czarniecka-Skubina, E. (2023). Sous-vide as an alternative method of cooking to improve the quality of meat: a review. Foods, 12(16): 31103221. https://doi.org/10.3390/foods12163110.

    • Search Google Scholar
    • Export Citation
  • Li, C., Al-Dalali, S., Wang, Z.P., Xu, B.C., and Zhou, H. (2022). Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC-MS-O, GC-IMS, and E-nose. Food Chemistry, 386: 132728. https://doi.org/10.1016/j.foodchem.2022. 132728.

    • Search Google Scholar
    • Export Citation
  • Li, M.Q., Yang, R.W., Zhang, H., Wang, S.L., Chen, D., and Lin, S.Y. (2019). Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chemistry, 290: 3239. https://doi.org/10.1016/j.foodchem.2019.03.124.

    • Search Google Scholar
    • Export Citation
  • Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S.C., and Califano, A.N. (2017). Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Structure, 145259. https://doi.org/10.1016/j.foostr.2017.06.004.

    • Search Google Scholar
    • Export Citation
  • O'Sullivan, M.G., O'Neill, C.M., Conroy, S., Judge, M.J., and Berry, D.P. (2021). Sensory consumer and descriptive analysis of steaks from beef animals selected from tough and tender animal genotypes: genetic meat quality traits can be detected by consumers. Foods, 10(8): 1911. https://doi.org/10.3390/foods10081911.

    • Search Google Scholar
    • Export Citation
  • Pathare, P.B. and Roskilly, A.B. (2016). Quality and energy evaluation in meat cooking. Food Engineering Reviews, 8: 435447. https://doi.org/10.1007/s12393-016-9143-5.

    • Search Google Scholar
    • Export Citation
  • Saccà, E., Corazzin, M., Bovolenta, S., and Piasentier, E. (2019). Meat quality traits and the expression of tenderness-related genes in the loins of young goats at different ages. Animal, 13: 24192428. https://doi.org/10.1017/S1751731119000405.

    • Search Google Scholar
    • Export Citation
  • Smith, M.A., Bush, R.D., Thomson, P.C., and Hopkins, D.L. (2015). Carcass traits and saleable meat yield of alpacas (Vicugna pacos) in Australia. Meat Science, 107: 111. https://doi.org/10.1016/j.meatsci.2015.04.003.

    • Search Google Scholar
    • Export Citation
  • Srouji, I. and Savu, C. (2018). Quality of meat obtained by the halal slaughter method. Journal of Biotechnology, 280: S71S72. https://doi.org/10.1016/j.jbiotec.2018.06.234.

    • Search Google Scholar
    • Export Citation
  • Varga-Visi, É. and Toxanbayeva, B. (2017). Application of fat replacers and their effect on quality of comminuted meat products with low lipid content: a review. Acta Alimentaria, 46: 181186. https://doi.org/10.1556/066.2016.0008.

    • Search Google Scholar
    • Export Citation
  • Xiang, C., Li, S.B., Zhang, D.Q., Huang, C.Y., Zhao, Y.X., Zheng, X.C., Wang, Z.Y., and Chen, L. (2023). Characterization and discrimination of the flavor profiles of Chinese indigenous sheep breeds via electronic sensory, smart instruments and chemometrics. Journal of Food Composition and Analysis, 122: 105458. https://doi.org/10.1016/j.jfca.2023.105458.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2023 0 0 0
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 43 5 4
Mar 2024 1872 7 10
Apr 2024 116 4 7
May 2024 0 0 0