Authors:
R. Habibi Department of Food Science and Technology, Islamic Azad University Tabriz Branch, Tabriz, Iran

Search for other papers by R. Habibi in
Current site
Google Scholar
PubMed
Close
,
A. Khosrowshahi Asl Department of Food Science and Technology, Urmia University, Faculty of Agriculture, Urmia, Iran

Search for other papers by A. Khosrowshahi Asl in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1204-6092
,
L. Roufegarinejad Department of Food Science and Technology, Islamic Azad University Tabriz Branch, Tabriz, Iran

Search for other papers by L. Roufegarinejad in
Current site
Google Scholar
PubMed
Close
,
S. Zomorodi Department of Agricultural Engineering Research, West Azerbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran

Search for other papers by S. Zomorodi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4318-487X
, and
N. Asefi Department of Food Science and Technology, Islamic Azad University Tabriz Branch, Tabriz, Iran

Search for other papers by N. Asefi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Plant-based proteins are being rapidly explored in the food industry to produce healthy and nutritious foods. Herein, the effects of soy protein isolate (SPI) ratio to oat germ powder (OGP) (0:0, 3.7: 6.3, 5:5, 0:10, 10:0, and 6.3:3.7%) were studied on the physicochemical, colour, rheological, microbial, antioxidant, and sensory properties of wheyless cheese. The results showed that by increasing SPI and OGP levels, ash, white index value, elastic modulus, and complex viscosity decreased, while pH, fat in dry matter, Chroma, and total colour (ΔE) increased. Also, syneresis was only observed in the control sample and was not observed in other samples. Control sample together with sample containing 10% of OGP showed the highest microbial count (i.e., mesophilic bacteria and yeasts-moulds), while samples containing 10% of SPI showed the lowest microbial count. Furthermore, the growth of both coliform and psychrophilic bacteria in all samples was negligible. Based on the results of sensory evaluation, with increasing SPI and OGP, the sensory evaluation score of samples decreased but they were within the acceptable range. According to the results obtained in this study, the combinations of 5% SPI and 5% OGP or 3.7% SPI and 6.3% OGP are recommended to be used in wheyless cheese production.

  • Anli, E.A., Gursel, A., Gursoy, A., and Mert, B. (2023). Assessment of the quality attributes of oat β-glucan fortified reduced-fat goat milk yogurt supported by microfluidization. Foods, 12(18): 3457. https://doi.org/10.3390/foods12183457.

    • Search Google Scholar
    • Export Citation
  • AOAC (2005). Official methods of analysis, 18th ed. Association of Official Analytical Chemists, Washington DC, Methods No. 933.05 and 920.123.

    • Search Google Scholar
    • Export Citation
  • Atia, M., Wenshui, X., and Guonong, Z. (2004). Effect of soy protein supplementation on the quality of ripening cheddar-type cheese. International Journal of Dairy Technology, 57(4): 209214. https://doi.org/10.1111/j.1471-0307.2004.00107.x.

    • Search Google Scholar
    • Export Citation
  • Bachmann, H.P. (2001). Cheese analogues: a review. International Dairy Journal, 11(4–7): 505515. https://doi.org/10.1016/S0958-6946(01)00073-5.

    • Search Google Scholar
    • Export Citation
  • Bağcı, A., Geçgel, Ü., Özcan, M.M., Dumlupınar, Z., and Uslu, N. (2019). Oil contents and fatty acid composition of oat (Avena sativa L) seed and oils. Journal of Agroalimentary Processes and Technologies, 25: 182186.

    • Search Google Scholar
    • Export Citation
  • Batool, M., Nadeem, M., Imran, M., Gulzar, N., Shahid, M.Q., Shahbaz, M., Ajmal, M., and Khan, I.T. (2018). Impact of vitamin E and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening. Lipids in Health and Disease, 17(1): 114. https://doi.org/10.1186/s12944-018-0735-3.

    • Search Google Scholar
    • Export Citation
  • Bostanabad, M.K., Bolandi, M., Nafchi, A.M., and Baghaei, H. (2022). Wheyless cheese: an alternative method to reduce the environmental hazards of Lighvan cheese production. Journal of Food and Bioprocess Engineering, 5: 9398. https://doi.org./10.22059/jfabe.2022.345145.1122.

    • Search Google Scholar
    • Export Citation
  • Farahnaky, A., Mousavi, S.H., and Nasiri, M. (2013). Role of salt in Iranian ultrafiltered Feta cheese: some textural and physicochemical changes during ripening. International Journal of Dairy Technology, 66(3): 359365. https://doi.org/10.1111/1471-0307.12051.

    • Search Google Scholar
    • Export Citation
  • Gholamhosseinpour, A.A., Tehrani, M.M., and Razavi, S.M.A. (2018). Optimization of textural characteristics of analogue UF-Feta cheese made from dairy and non-dairy ingredients. Iranian Food Science and Technology Research Journal, 13(6): 8091. https://ifstrj.um.ac.ir/article_36505.html?lang=en.

    • Search Google Scholar
    • Export Citation
  • Golchin, N., Jafarian, S., Ghaboos, S.H.H., and Nasiraie, L.R. (2023). Optimization of cheese analogue formulation with rice milk, chia seed and hazelnut oil applying response surface methodology. Journal of Research and Innovation in Food Science and Technology, 11(4): 423436. https://doi.org/10.22101/jrifst.2022.343004.1361.

    • Search Google Scholar
    • Export Citation
  • Hamad, M.N.E.F., El-Bushuty, D.H., and El-Zakzouk, H.S. (2020). Manufacture of functional Kareish cheese fortified with oat Taliban lima bean and sweet lupine. Egyptian Journal of Food Science, 48(2): 315326. https://ejfs.journals.ekb.eg/article_117012.html.

    • Search Google Scholar
    • Export Citation
  • Hamdy, S.M., Hassan, M.G., Ahmed, R.B., and Abdelmontaleb, H.S. (2021). Impact of oat flour on some chemical physicochemical and microstructure of processed cheese. Journal of Food Processing and Preservation, 45(9): e15761. https://doi.org/10.1111/jfpp15761.

    • Search Google Scholar
    • Export Citation
  • Hussein, G.A.M. and Shalaby, S.M. (2018). Properties of imitation cheese products prepared with non-dairy ingredients. The Saudi Journal of Life Sciences, 3: 578587. https://doi.org/10.21276/haya.2018.3.9.2.

    • Search Google Scholar
    • Export Citation
  • Khalid, N.T. and Mosa, M.A. (2018). Effect of wheat germ on chemical sensory and technological properties of soft cheese. International Journal of Dairy Science, 13: 4045. https://doi.org/10.3923/ijds.2018.40.45.

    • Search Google Scholar
    • Export Citation
  • Khang, D.T., Vasiljevic, T., and Xuan, T.D. (2016). Bioactive compounds, antioxidant and enzyme activities in germination of oats (Avena sativa L). International Food Research Journal, 23: 19801987. http://www.ifrj.upm.edu.my/23%20(05)%202016/(20).pdf.

    • Search Google Scholar
    • Export Citation
  • Khiabanian, N.O., Motamedzadegan, A., Raisi, S.N., and Alimi, M. (2020). Chemical textural rheological and sensorial properties of whey-less feta cheese as influenced by replacement of milk protein concentrate with pea protein isolate. Journal of Texture Studies, 51(3): 488500. https://doi.org/10.1111/jtxs.12508.

    • Search Google Scholar
    • Export Citation
  • Khiabanian, N.O., Motamedzadegan, A., Raisi, S.N., and Alimi, M. (2022). Structure–rheology characterization of whey-less feta cheese containing milk protein concentrate/soy protein isolate. Korea-Australia Rheology Journal, 34: 3549. https://doi.org/10.1007/s13367-022-00020-3.

    • Search Google Scholar
    • Export Citation
  • Kim, S.Y., Park, P.S.W., and Rhee, K.C. (1992). Textural properties of cheese analogs containing proteolytic enzyme-modified soy protein isolates. Journal of the American Oil Chemists' Society, 69(8): 755759. https://doi.org/10.1007/BF02635911.

    • Search Google Scholar
    • Export Citation
  • Kordialik-Bogacka, E., Bogdan, P., and Diowksz, A. (2014). Malted and unmalted oats in brewing. Journal of the Institute of Brewing, 120(4): 390398. https://doi.org/10.1002/jib.178.

    • Search Google Scholar
    • Export Citation
  • Kubo, M.T.K., Maus, D., Xavier, A.A.O., Mercadante, A.Z., and Viotto, W.H. (2013). Transference of lutein during cheese making colour stability and sensory acceptance of Prato cheese. Food Science and Technology, 33(Suppl.1): 8288. https://doi.org/10.1590/S0101-20612013000500013.

    • Search Google Scholar
    • Export Citation
  • Lee, C.H., Yang, L., Xu, J.Z., Ying, S., Yeung, V., Huang, Y., and Chen, Z.Y. (2005). Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chemistry, 90(4): 735741. https://doi.org/10.1016/j.foodchem.2004.04.034.

    • Search Google Scholar
    • Export Citation
  • Ma, W., Qi, B., Sami, R., Jiang, L., Li, Y., and Wang, H. (2018). Conformational and functional properties of soybean proteins produced by extrusion-hydrolysis approach. International Journal of Analytical Chemistry, 2018: 9182508. https://doi.org/10.101155/2018/9182508.

    • Search Google Scholar
    • Export Citation
  • Mazinani, S., Motamedzadegan, A., Raeisi, S.N., and Alimi, M. (2021). Characterization of bacteriologically acidified feta cheese using soy protein isolate in different substitution percentages: rheological microbiological and sensory properties. Journal of Food Measurement and Characterization, 15(6): 55155527. https://doi.org/10.1007/s11694-021-00973-z.

    • Search Google Scholar
    • Export Citation
  • Murphy, P.A., Song, T., Buseman, G., Barua, K., Beecher, G.R., Trainer, D., and Holden, J. (1999). Isoflavones in retail and institutional soy foods. Journal of Agricultural and Food Chemistry, 47(7): 26972704. https://pubs.acs.org/doi/10.1021/jf981144o.

    • Search Google Scholar
    • Export Citation
  • Palupi, N.S., Prangdimurt, E., Faridah, D.N., and Asyhari, M.H. (2020). Reducing allergenicity of soy protein isolate from several varieties of soybean through glycation with lactose. Current Research in Nutrition and Food Science, 8(1): 268280. https://doi.org/10.12944/CRNFSJ.8.1.25.

    • Search Google Scholar
    • Export Citation
  • Paudel, D., Dhungana, B., Caffe, M., and Krishnan, P. (2021). A review of health-beneficial properties of oats. Foods, 10(11): 2591. https://doi.org/10.3390/foods10112591.

    • Search Google Scholar
    • Export Citation
  • Peng, Y., Kyriakopoulou, K., Ndiaye, M., Bianeis, M., Keppler, J.K., and van der Goot, A.J. (2021). Characteristics of soy protein prepared using an aqueous ethanol washing process. Foods, 10(9): 2222. https://doi.org/10.3390/foods10092222.

    • Search Google Scholar
    • Export Citation
  • Prag, A.A. and Henriksen, C.B. (2020). Transition from animal-based to plant-based food production to reduce greenhouse gas emissions from agriculture - the case of Denmark. Sustainability, 12(19): 8228. https://doi.org/10.3390/su12198228.

    • Search Google Scholar
    • Export Citation
  • Rahman, M.B.M., Islam, M.B., Biswas, A.H.M.K.M., and Alam, B.M.C. (2015). In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Research Notes, 8(1): 621. https://doi.org/10.1186/s13104-015-1618-6.

    • Search Google Scholar
    • Export Citation
  • Rinaldoni, A.N., Palatnik, D.R., Zaritzky, N., and Campderrós, M.E. (2014). Soft cheese-like product development enriched with soy protein concentrates. LWT – Food Science and Technology, 55(1): 139147. https://doi.org/10.1016/j.lwt.2013.09.003.

    • Search Google Scholar
    • Export Citation
  • Rojas-Nery, E., Güémes-Vera, N., Meza-Marquez, O., and Totosaus, A. (2015). Carrageenan type effect on soybean oil/soy protein isolate emulsion employed as fat replacer in panela-type cheese. Grasas y Aceites, 66: e097. https://doi.org/10.3989/gya0240151.

    • Search Google Scholar
    • Export Citation
  • Sen, M.A., Palabiyik, I., and Kurultay, S. (2019). The effect of saleps obtained from various Orchidaceae species on some physical and sensory properties of ice cream. Food Science and Technology Campinas, 39(1): 8387. https://doi.org/10.1590/fst.26017.

    • Search Google Scholar
    • Export Citation
  • Singh, R., De, S., and Belkheir, A. (2013). Avena sativa (oat) a potential nutraceutical and therapeutic agent: an overview. Critical Reviews in Food Science and Nutrition, 53(2): 126144. https://doi.org/10.1080/10408398.2010.526725.

    • Search Google Scholar
    • Export Citation
  • Soleimani-Rambod, A., Zomorodi, S., Raeisi, S.N., Khosrowshahi, Asl.A., and Shahidi, S.A. (2018). The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings, 8(2): 80. https://doi.org/10.3390/coatings8020080.

    • Search Google Scholar
    • Export Citation
  • Song, D.H., Lee, K.J., and An, J.H. (2024). Antioxidant activity and volatile components of sprouted oat beer. LWT, 193: 115757. https://doi.org/10.1016/j.lwt.2024.115757.

    • Search Google Scholar
    • Export Citation
  • Tian, B., Xie, B., Shi, J., Wu, J., Cai, Y., Xu, T., Xue, S., and Deng, Q. (2010). Physicochemical changes of oat seeds during germination. Food Chemistry, 119(3): 11951200. https://doi.org/10.1016/j.foodchem.2009.08.035.

    • Search Google Scholar
    • Export Citation
  • Trmčić, A., Chauhan, K., Kent, D.J., Ralyea, R.D., Martin, N.H., Boor, K.J., and Wiedmann, M. (2016). Coliform detection in cheese is associated with specific cheese characteristics but no association was found with pathogen detection. Journal of Dairy Science, 99(8): 61056120. https://doi.org/10.3168/jds.2016-11112.

    • Search Google Scholar
    • Export Citation
  • Tungmunnithum, D., Thongboonyou, A., Pholboon, A., and Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines, 5(3): 93. https://doi.org/10.3390/medicines5030093.

    • Search Google Scholar
    • Export Citation
  • Zomorodi, S., Azarpazhooh, E., and Behmadi, H. (2020). Influence of some hydrocolloids on textural properties of UF cheese. Journal of Food Biosciences and Technology, 10(2): 110.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2023 0 0 0
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 17 8 2
Mar 2024 1573 7 10
Apr 2024 145 4 6
May 2024 0 0 0