Authors:
U.T. Zoua Assoumou Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Türkiye

Search for other papers by U.T. Zoua Assoumou in
Current site
Google Scholar
PubMed
Close
,
H.R. Öziyci Department of Gastronomy and Culinary Arts, Faculty of Tourism, Antalya Bilim University, Antalya, Türkiye

Search for other papers by H.R. Öziyci in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7750-3931
,
A. Hacıoğlu Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Türkiye

Search for other papers by A. Hacıoğlu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3189-7418
, and
M. Karhan Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Türkiye

Search for other papers by M. Karhan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8058-3709
Restricted access

Abstract

Steviol glycosides (SGs) are natural sweeteners derived from stevia leaves, which have various applications in food and beverage products. The extraction efficiency of SGs depends on several factors, such as solvent type, solid to solvent ratio, centrifugal force, and temperature. This study aimed to compare the effects of different solvents (ethanol and water) and leaf moisture (dry and fresh) on the extraction efficiency of major steviol glycosides (SGs) of rebaudioside A (Reb A), stevioside (ST), and rebaudioside C (Reb C) in stevia (var. Levent 93) plant. A Box–Behnken design was used to optimise the extraction parameters for each extraction type. The results showed that ethanol was a more effective solvent than water, however, aqueous extraction was more environmentally friendly and low-cost, and could also yield high concentrations of SGs when fresh leaves were used. The major SGs had similar concentrations in ethanolic extraction, but Reb A was twice as high as ST in aqueous extraction. Reb C was influenced by the solid to solvent ratio in both extraction types, but more so in water extraction. Temperature had a positive effect on ST and Reb C in water extraction of fresh leaves, but not in water extraction of dry leaves or ethanolic extraction. The results of this study contribute to the optimisation of SGs extraction from stevia leaves and provide insights for future research on the effects of different solvents and extraction parameters on the quality and purity of SGs.

Supplementary Materials

    • Supplemental Material
  • Ameer, K., Bae, S.-W., Jo, Y., Lee, H.-G., Ameer, A., and Kwon, J.-H. (2017). Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. Food Chemistry, 229: 198207. https://doi.org/10.1016/j.foodchem.2017.01.121.

    • Search Google Scholar
    • Export Citation
  • Arslan Kulcan, A. and Karhan, M. (2021). Effect of process parameters on stevioside and rebaudioside A content of stevia extract obtained by decanter centrifuge. Journal of Food Processing and Preservation, 45(2): e15168. https://doi.org/10.1111/jfpp.15168.

    • Search Google Scholar
    • Export Citation
  • Carbonell-Capella, J.M., Žlabur, J.Š., Rimac Brnčić, S., Barba, F.J., Grimi, N., Koubaa, M., Brnčić, M., and Vorobiev, E. (2017). Electrotechnologies, microwaves, and ultrasounds combined with binary mixtures of ethanol and water to extract steviol glycosides and antioxidant compounds from Stevia rebaudiana leaves. Journal of Food Processing and Preservation, 41(5): e13179. https://doi.org/10.1111/jfpp.13179.

    • Search Google Scholar
    • Export Citation
  • Celaya, L., Ferreyra, D., Kolb, E., and Kolb Koslobsky, N. (2022). Extraction of stevioside and rebaudioside A from Stevia rebaudiana by percolation with ethanol-water solvents. Revista de Ciencia y Tecnología, 38: 5562. https://doi.org/10.36995/j.recyt.2022.38.007.

    • Search Google Scholar
    • Export Citation
  • Celaya, L.S., Kolb, E., and Kolb, N. (2016). Solubility of stevioside and rebaudioside A in water, ethanol and their binary mixtures. International Journal of Food Studies, 5(2): 158166. https://doi.org/10.7455/ijfs/5.2.2016.a4.

    • Search Google Scholar
    • Export Citation
  • Cemeroğlu, B. (2007). Gıda Analizleri (Food analyses). Gıda Teknolojisi Derneği Yayınları, Ankara (In Turkish).

  • Chhaya, Mondal, S., Majumdar, G.C., and Sirshendu, De. (2012). Clarifications of stevia extract using cross flow ultrafiltration and concentration by nanofiltration. Separation and Purification Technology, 89: 125134. https://doi.org/10.1016/j.seppur.2012.01.016.

    • Search Google Scholar
    • Export Citation
  • Formigoni, M., Milani, P.G., Da Silva Avíncola, A., Dos Santos, V.J., Benossi, L., Dacome, A.S., Pilau, E.J., and Da Costa, S.C. (2018). Pretreatment with ethanol as an alternative to improve steviol glycosides extraction and purification from a new variety of stevia. Food Chemistry, 241: 452459. https://doi.org/10.1016/j.foodchem.2017.09.022.

    • Search Google Scholar
    • Export Citation
  • Jaitak, V., Bikram Singh, B., and Kaul, V.K. (2009). An efficient microwave-assisted extraction process of stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni): microwave-assisted extraction process of stevioside and rebaudioside-A. Phytochemical Analysis, 20(3): 240245. https://doi.org/10.1002/pca.1120.

    • Search Google Scholar
    • Export Citation
  • Jentzer, J.-B., Alignan, M., Vaca-Garcia, C., Rigal, L., and Vilarem, G. (2015). Response surface methodology to optimise accelerated solvent extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chemistry, 166: 561567. https://doi.org/10.1016/j.foodchem.2014.06.078.

    • Search Google Scholar
    • Export Citation
  • Kootstra, A.M.J. and Huurman, S. (2017). Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification, (Project No. 3750295600; p. 722). ACCRES - Wageningen Plant Research.

    • Search Google Scholar
    • Export Citation
  • López-Carbón, V., Sayago, A., González-Domínguez, R., and Fernández-Recamales, Á. (2019). Simple and efficient green extraction of steviol glycosides from Stevia rebaudiana leaves. Foods, 8(9): 402. https://doi.org/10.3390/foods8090402.

    • Search Google Scholar
    • Export Citation
  • Ministry of Agriculture and Forestry (2020). Stevia levent 93 Tescil Raporu (Stevia levent 93 registration report). Tohumluk Tescil ve Sertifikasyon Merkez Müdürlüğü. (Seed Registration and Certification Central Directorate) (In Turkish).

    • Search Google Scholar
    • Export Citation
  • Németh, Á. and Jánosi, Sz. (2019). Extraction of steviol glycosides from dried Stevia rebaudiana by pressurized hot water extraction. Acta Alimentaria, 48(2): 241252. https://doi.org/10.1556/066.2019.48.2.12.

    • Search Google Scholar
    • Export Citation
  • Periche, A., Castelló, M.L., Heredia, A., and Escriche, I. (2015). Influence of extraction methods on the yield of steviol glycosides and antioxidants in Stevia rebaudiana extracts. Plant Foods for Human Nutrition, 70(2): 119127. https://doi.org/10.1007/s11130-015-0475-8.

    • Search Google Scholar
    • Export Citation
  • Puri, M., Sharma, D., Barrow, C.J., and Tiwary, A.K. (2012). Optimisation of novel method for the extraction of steviosides from Stevia rebaudiana leaves. Food Chemistry, 132(3): 11131120. https://doi.org/10.1016/j.foodchem.2011.11.063.

    • Search Google Scholar
    • Export Citation
  • Putnik, P., Bursać Kovačević, D., Režek Jambrak, A., Barba, F., Cravotto, G., Binello, A., Lorenzo, J., and Shpigelman, A. (2017). Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes—a review. Molecules, 22(5): 680. https://doi.org/10.3390/molecules22050680.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Pérez, C., Gilbert-López, B., Mendiola, J.A., Quirantes-Piné, R., Segura-Carretero, A., and Ibáñez, E. (2016). Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology: general. Electrophoresis, 37(13): 19381946. https://doi.org/10.1002/elps.201600071.

    • Search Google Scholar
    • Export Citation
  • Rouhani, M. (2019). Modeling and optimization of ultrasound-assisted green extraction and rapid HPTLC analysis of stevioside from Stevia rebaudiana. Industrial Crops and Products, 132: 226235. https://doi.org/10.1016/j.indcrop.2019.02.029.

    • Search Google Scholar
    • Export Citation
  • Xu, S., Wang, G., Guo, R., Wei, Z., and Zhang, J. (2019). Extraction of steviol glycosides from Stevia rebaudiana (Bertoni) leaves by high-speed shear homogenization extraction. Journal of Food Processing and Preservation, 43(12): e14250. https://doi.org/10.1111/jfpp.14250.

    • Search Google Scholar
    • Export Citation
  • Yen, N.T.H. and Quoc, L.P.T. (2020). Extraction of total stevioside content from dried Stevia rebaudiana Bertoni leaves. Bulletin of the Transilvania University of Brasov, Series II - Forestry • Wood Industry • Agricultural Food Engineering, 12(61): 137144. https://doi.org/10.31926/but.fwiafe.2019.12.61.1.12.

    • Search Google Scholar
    • Export Citation
  • Žlabur, J.Š., Voća, S., Dobričević, N., Brnčić, M., Dujmić, F., and Rimac Brnčić, S. (2015). Optimization of ultrasound assisted extraction of functional ingredients from Stevia rebaudiana Bertoni leaves. International Agrophysics, 29(2): 231237. https://doi.org/10.1515/intag-2015-0017.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE.

 

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 0 0 0
May 2024 167 5 2
Jun 2024 220 2 2