Authors:
G. Başyiğit Kılıç Department of Food Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Türkiye

Search for other papers by G. Başyiğit Kılıç in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1211-0568
,
H. Yalçın Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Türkiye

Search for other papers by H. Yalçın in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2162-2418
,
A. Soyuçok Department of Food Processing, Burdur Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Türkiye

Search for other papers by A. Soyuçok in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2626-5827
, and
M. Sudağıdan Scientific and Technology Application and Research Center, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Türkiye

Search for other papers by M. Sudağıdan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3980-8344
Restricted access

Abstract

Nisin is a bacteriocin produced by Lactococcus lactis and it is generally recognised as safe by the U.S. Food and Drug Administration. The study aimed to determine the presence of nisin-resistant Staphylococcus, Enterococcus, and Listeria spp. in 157 raw milk and 125 cheese samples. As a result of the isolation procedure, a total of 282 bacterial strains were isolated. 83/282 strains showed resistance to 300 ppm nisin concentration and they were identified by 16S rRNA sequencing. The two most common species were Enterococcus faecalis and Staphylococcus aureus. In both raw milk and cheese samples, nisin-resistant Listeria could not be detected. Generally, enterococci (59/65) showed higher biofilm formation ability than staphylococci (13/18). 38% (25/65) of enterococci and 88% (16/18) of staphylococci were determined to have protease activity in at least one of Skim Milk Agar, Casein Agar, or Milk Agar. In addition, the most common antibiotic resistance in nisin-resistant enterococci was against chloramphenicol. This study revealed that nisin-resistant staphylococci and enterococci are present in raw milk and cheese. In addition, the presence of some virulence factors such as biofilm production, protease activity, and antibiotic resistance in resistant isolates needs to be drawn attention to. Consumption of nisin-resistant microorganisms with virulence factors through food is a food safety risk.

  • Ahmed, B., El-Malt, L.M., Abdel Hameed, K.G., and El-Zamkan, M.A. (2022). Evaluation the antibacterial effect of hydroalcoholic coffee extract on L. monocytogenes isolated from milk and milk products. SVU – International Journal of Veterinary Sciences, 5(3): 3851.

    • Search Google Scholar
    • Export Citation
  • Angelopoulou, A., Field, D., Pérez-Ibarreche, M., Warda, A.K., Hill, C., and Ross, R.P. (2020). Vancomycin and nisin A are effective against biofilms of multi-drug resistant Staphylococcus aureus isolates from human milk. PLoS One, 15(5): e0233284.

    • Search Google Scholar
    • Export Citation
  • Can, Ö.P. and Hastaoğlu, E. (2020). The effects of nisin on the growth of milk-derived Staphylococcus aureus strains in the cheese. Harran Tarım ve Gıda Bilimleri Dergisi, 24(3): 310316.

    • Search Google Scholar
    • Export Citation
  • Castelani, L., Arcaro, J.R.P., Braga, J.E.P., Bosso, A.S., Moura, Q., Esposito, F., and Lincopan, N. (2019). Activity of nisin, lipid bilayer fragments and cationic nisin-lipid nanoparticles against multidrug-resistant Staphylococcus spp. isolated from bovine mastitis. Journal of Dairy Science, 102(1): 678683.

    • Search Google Scholar
    • Export Citation
  • Clinical and Laboratory Standards Institute (CLSI) (2021). M100-Ed31 Performance standards for antimicrobial susceptibility testing, 31st ed.. Clinical and Laboratory Standards Institute Publishing, Malvern, PA, USA, 2021; ISBN 978-1-68440-105-5.

    • Search Google Scholar
    • Export Citation
  • Dapkevicius, M.D.L.E., Sgardioli, B., Câmara, S.P., Poeta, P., and Malcata, F.X. (2021). Current trends of enterococci in dairy products: a comprehensive review of their multiple roles. Foods, 10(4): 821.

    • Search Google Scholar
    • Export Citation
  • Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., and Kakanj, M. (2022). Bacteriocins: properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1): e24093.

    • Search Google Scholar
    • Export Citation
  • Field, D., Ross, R.P., and Hill, C. (2018). Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, 20: 16.

    • Search Google Scholar
    • Export Citation
  • Field, D., O’Connor, R., Cotter, P.D., Ross, R.P., and Hill, C. (2016). In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Frontiers in Microbiology, 7: 508.

    • Search Google Scholar
    • Export Citation
  • Gaglio, R., Couto, N., Marques, C., Lopes, M.D.F.S., Moschetti, G., Pomba, C., and Settanni, L. (2016). Evaluation of antimicrobial resistance and virulence of enterococci from equipment surfaces, raw materials, and traditional cheeses. International Journal of Food Microbiology, 236: 107114.

    • Search Google Scholar
    • Export Citation
  • Gharsallaoui, A., Oulahal, N., Joly, C., and Degraeve, P. (2016). Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Critical Reviews in Food Science and Nutrition, 56(8): 12621274.

    • Search Google Scholar
    • Export Citation
  • Guney, A.K., Yildirim, T., and Durupinar, B. (2014). A study on class 1 integrons and antimicrobial resistance among clinical staphylococci isolates from a Turkish hospital. Clinical Microbiology, 3(6): 14.

    • Search Google Scholar
    • Export Citation
  • Hassan, H., St-Gelais, D., Gomaa, A., and Fliss, I. (2021). Impact of nisin and nisin-producing Lactococcus lactis ssp. lactis on Clostridium tyrobutyricum and bacterial ecosystem of cheese matrices. Foods, 10(4): 898.

    • Search Google Scholar
    • Export Citation
  • Herrera, J.J.R., Cabo, M.L., González, A., Pazos, I., and Pastoriza, L. (2007). Adhesion and detachment kinetics of several strains of Staphylococcus aureus subsp. aureus under three different experimental conditions. Food Microbiology, 24(6): 585591.

    • Search Google Scholar
    • Export Citation
  • Khosa, S., Lagedroste, M., and Smits, S.H. (2016). Protein defense systems against the lantibiotic nisin: function of the immunity protein NisI and the resistance protein NSR. Frontiers in Microbiology, 7: 504.

    • Search Google Scholar
    • Export Citation
  • Koçak, U.Ç., Arslan, E., Çobanoğlu, Ş., Coşkun, M.K., Yazıcı, A., and Örtucu, S. (2022). The effect of nisin and chloramphenicol combination on Staphylococcus aureus ATCC 6538 biofilm structure. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2): 713720.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Devi, S., Sood, S.K., Kapila, S., Narayan, K.S., and Shandilya, S. (2019). Antibiotic resistance and virulence genes in nisin‐resistant Enterococcus faecalis isolated from raw buffalo milk modulate the innate functions of rat macrophages. Journal of Applied Microbiology, 127(3): 897910.

    • Search Google Scholar
    • Export Citation
  • Lee, S., Park, Y.J., Yoo, J.H., Kahng, J., Jeong, I.H., Kwon, Y.M., and Han, K. (2008). Comparison of culture screening protocols for methicillin-resistant Staphylococcus aureus (MRSA) using a chromogenic agar (MRSA-Select). Annals of Clinical and Laboratory Science, 38(3): 254257.

    • Search Google Scholar
    • Export Citation
  • Martínez, B., Obeso, J.M., Rodríguez, A., and García, P. (2008). Nisin-bacteriophage crossresistance in Staphylococcus aureus. International Journal of Food Microbiology, 122(3): 253258.

    • Search Google Scholar
    • Export Citation
  • Mathur, H., Field, D., Rea, M.C., Cotter, P.D., Hill, C., and Ross, R.P. (2018). Fighting biofilms with lantibiotics and other groups of bacteriocins. npj Biofilms and Microbiomes, 4(1): 9.

    • Search Google Scholar
    • Export Citation
  • McAuley, C.M., Britz, M.L., Gobius, K.S., and Craven, H.M. (2015). Prevalence, seasonality, and growth of enterococci in raw and pasteurised milk in Victoria, Australia. Journal of Dairy Science, 98(12): 83488358.

    • Search Google Scholar
    • Export Citation
  • Mehmeti, I., Bytyqi, H., Muji, S., Nes, I.F., and Diep, D.B. (2017). The prevalence of Listeria monocytogenes and Staphylococcus aureus and their virulence genes in bulk tank milk in Kosovo. The Journal of Infection in Developing Countries, 11(3): 247254.

    • Search Google Scholar
    • Export Citation
  • Møretrø, T., Hermansen, L., Hoick, A.L., Sidhu, M.S., Rudi, K., and Langsrud, S. (2003). Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food processing environments. Applied and Environmental Microbiology, 69(9): 56485655.

    • Search Google Scholar
    • Export Citation
  • Nakatsuji, T., Brinton, S.L., Cavagnero, K.J., O’Neill, A.M., Chen, Y., Dokoshi, T., and Gallo, R.L. (2023). Competition between skin antimicrobial peptides and commensal bacteria in type 2 inflammation enables survival of S. aureus. Cell Reports, 42(5): 112494.

    • Search Google Scholar
    • Export Citation
  • Nayak, D.N., Savalia, C.V., Kalyani, I.H., Kumar, R., and Kshirsagar, D.P. (2015). Isolation, identification, and characterization of Listeria spp. from various animal origin foods. Veterinary World, 8(6): 695701.

    • Search Google Scholar
    • Export Citation
  • Onyeaka, H., Anumudu, C.K., Okolo, C.A., Anyogu, A., Odeyemi, O., and Bassey, A.P. (2022). A review of the top 100 most cited papers on food safety. Quality Assurance and Safety of Crops & Foods, 14(4): 91104.

    • Search Google Scholar
    • Export Citation
  • Quereda, J.J., Morón-García, A., Palacios-Gorba, C., Dessaux, C., García-del Portillo, F., Pucciarelli, M.G., and Ortega, A.D. (2021). Pathogenicity and virulence of Listeria monocytogenes: a trip from environmental to medical microbiology. Virulence, 12(1): 25092545.

    • Search Google Scholar
    • Export Citation
  • Saini, N., Saini, R.K., Verma, S.K., and Sood, S.K. (2023). Some aspects of resistance development against nisin and human neutrophil peptide-1 in Enterococcus faecalis. Microbiology, 92(5): 704714.

    • Search Google Scholar
    • Export Citation
  • Santos, R., Ruza, D., Cunha, E., Tavares, L., and Oliveira, M. (2019). Diabetic foot infections: application of a nisin-biogel to complement the activity of conventional antibiotics and antiseptics against Staphylococcus aureus biofilms. PloS One, 14(7): e0220000.

    • Search Google Scholar
    • Export Citation
  • Song, T.S., Jin, Y., Bao, J., Kang, D., and Xie, J. (2016). Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. Journal of Hazardous Materials, 317: 7380.

    • Search Google Scholar
    • Export Citation
  • Stepanovic, S., Dakic, I., Opavski, N., Jezek, P., and Ranin, L. (2003). Influence of the growth medium composition on biofilm formation by Staphylococcus sciuri. Annals of Microbiology, 53(1): 6374.

    • Search Google Scholar
    • Export Citation
  • Sudagidan, M. and Aydin, A. (2010). Virulence properties of methicillin-susceptible Staphylococcus aureus food isolates encoding Panton–Valentine Leukocidin gene. International Journal of Food Microbiology, 138(3): 287291.

    • Search Google Scholar
    • Export Citation
  • Sudağıdan, M., Çavuşoğlu, C., and Bacakoğlu, F. (2008). Biyomalzeme yüzeylerinden izole edilen metisiline dirençli Staphylococcus aureus suşlarında virülans genlerinin araştırılması. (Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces) (In Turkish). Mikrobiyoloji Bülteni, 42: 2939.

    • Search Google Scholar
    • Export Citation
  • Sudagidan, M. and Yemenicioğlu, A. (2012). Effects of nisin and lysozyme on growth inhibition and biofilm formation capacity of Staphylococcus aureus strains isolated from raw milk and cheese samples. Journal of Food Protection, 75(9): 16271633.

    • Search Google Scholar
    • Export Citation
  • Ucak, S., Yurt, M.N.Z., Tasbasi, B.B., Acar, E.E., Altunbas, O., Soyucok, A., Ozalp, V.C., Aydin, A., and Sudagidan, M. (2022). Identification of bacterial communities of fermented cereal beverage Boza by metagenomic analysis. LWT – Food Science and Technology, 153: 112465.

    • Search Google Scholar
    • Export Citation
  • Völk, V., Graber, H.U., van den Borne, B.H.P., Sartori, C., Steiner, A., Bodmer, M., and Haerdi-Landerer, M.C. (2014). A longitudinal study investigating the prevalence of Staphylococcus aureus genotype B in seasonally communal dairy herds. Journal of Dairy Science, 97(7): 41844192.

    • Search Google Scholar
    • Export Citation
  • Wu, H.J., Wang, A.H., and Jennings, M.P. (2008). Discovery of virulence factors of pathogenic bacteria. Current Opinion in Chemical Biology, 12(1): 93101.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., Velliou, E., and Hong, S.H. (2020). Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. LWT – Food Science and Technology, 133: 110115.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 450 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 386 2 3
Nov 2024 120 1 0
Dec 2024 65 0 0
Jan 2025 161 0 0
Feb 2025 173 0 0
Mar 2025 111 1 0
Apr 2025 0 0 0