Authors:
V. Vichaibun Biochemistry Unit, Department of Medical Science, Faculty of Science, Rangsit University, Pathum Thani 12000, Thailand

Search for other papers by V. Vichaibun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1057-8546
and
T. Sophonnithiprasert Biochemistry Unit, Department of Medical Science, Faculty of Science, Rangsit University, Pathum Thani 12000, Thailand

Search for other papers by T. Sophonnithiprasert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Both onion and shallot are the most common ingredients to use for many recipes. Consuming onion and shallot provide health benefits including antidiabetic effects. However, the benefits of onion and shallot mixture at different ratios have not been studied in terms of total phenolic content, total antioxidant capacity, superoxide dismutase (SOD)-like activity, and antidiabetic effects. Our study revealed that shallot significantly increased total phenolic content in the mixture from 492 ± 32 μg mL−1 (100% v/v onion) to 803 ± 24 μg mL−1 (100% v/v shallot) depending on the ratios of shallot in the mixture. Shallot also significantly enhanced total antioxidant capacity, SOD-like activity, α-amylase inhibition, and α-glucosidase inhibition in the mixture. Shallot juice exhibited the highest percentage inhibition of α-amylase activity (40.51 ± 1.57%) and α-glucosidase activity (89.61 ± 2.85%) in comparison to those of onion juice and the mixture. In addition, significant positive correlation between phenolic compound and different variables was observed (P < 0.05). Phenolic compounds present in onion and shallot are probably responsible for many health benefits including antidiabetic effects.

  • Aguirre, L., Arias, N., Macarulla, M.T., Gracia, A., and Portillo, M.P. (2011). Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals Journal, 4: 189198.

    • Search Google Scholar
    • Export Citation
  • Aryal, D., Joshi, S., Thapa, N.K., Chaudhary, P., Basaula, S., Joshi, U., Bhandari, D., Rogers, H.M., Bhattarai, S., Sharma, K.R., Regmi, B.P., and Parajuli, N. (2024). Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: a comprehensive review. Food Science & Nutrition, 00: 121, Online version of record before inclusion in an issue, https://doi.org/10.1002/fsn3.3983.

    • Search Google Scholar
    • Export Citation
  • Balasundram, N., Sundram, K., and Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1): 191203.

    • Search Google Scholar
    • Export Citation
  • Beidokht, M.N. and Jäger, A.K. (2017). Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. Journal of Ethnopharmacology, 201: 2641.

    • Search Google Scholar
    • Export Citation
  • Beretta, H.V., Bannoud, F., Insani, M., Berli, F., Hirschegger, P., Galmarini, C.R., and Cavagnaro, P.F. (2017). Relationships between bioactive compound content and the antiplatelet and antioxidant activities of six Allium vegetable species. Food Technology and Biotechnology, 55(2): 266275.

    • Search Google Scholar
    • Export Citation
  • Colina-Coca, C., Gonzalez-Pena, D., de Ancos, B., and Sanchez-Moreno, C. (2017). Dietary onion ameliorates antioxidant defense, inflammatory response, and cardiovascular risk biomarkers in hypercholesterolemic Wistar rats. Journal of Functional Foods, 36: 300309.

    • Search Google Scholar
    • Export Citation
  • Dona, A.C., Pages, G., Gilbert, R.G., and Kuchel, P.W. (2010). Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate Polymers, 80(3): 599617.

    • Search Google Scholar
    • Export Citation
  • Eldin, I.M.T., Ahmed, E.M., and Elwahab, A.H.M. (2010). Preliminary study of the clinical hypoglycemic effects of Allium cepa (red onion) in type 1 and type 2 diabetic patients. Environmental Health Insights, 4: 7177.

    • Search Google Scholar
    • Export Citation
  • Kiani, Z., Hassanpour-Fard, M., Asghari, Z., and Hosseini, H. (2018). Experimental evaluation of a polyherbal formulation (Tetraherbs): antidiabetic efficacy in rats. Comparative Clinical Pathology, 27(6): 14371445.

    • Search Google Scholar
    • Export Citation
  • Lu, X., Wang, J., Al-Qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J., and Rasco, B.A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry, 129(2): 637644.

    • Search Google Scholar
    • Export Citation
  • Luangpirom, A., Kourchampa, W., Junaimuang, T., Somsapt, P., and Sritragool, O. (2013). Effect of shallot (Allium ascalonicum L.) bulb juice on hypoglycemia and sperm quality in streptozotocin induced diabetic mice. Animal Biology & Animal Husbandry Bioflux, 5(1): 4954.

    • Search Google Scholar
    • Export Citation
  • Mannucci, E., Monami, M., Lamanna, C., and Adalsteinsson, J.E. (2012). Post-prandial glucose and diabetic complications: systematic review of observational studies. Acta Diabetologica, 49(4): 307314.

    • Search Google Scholar
    • Export Citation
  • Mansuroğlu, B., Derman, S., Yaba, A., and Kızılbey, K. (2015). Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats. International Journal of Biological Macromolecules, 72: 7987.

    • Search Google Scholar
    • Export Citation
  • Masood, S., Rehman, A.U., Bashir, S., El Shazly, M., Imran, M., Khalil, P., Ifthikar, F., Jaffar, H.M., and Khursheed, T. (2021a). Investigation of the anti-hyperglycemic and antioxidant effects of wheat bread supplemented with onion peel extract and onion powder in diabetic rats. Journal of Diabetes and Metabolic Disorders, 20(1): 485495.

    • Search Google Scholar
    • Export Citation
  • Masood, S., Rehman, A.U., Ihsan, M.A., Shahzad, K., Sabir, M., Alam, S., Ahmed, W., Shah, Z.H., Alghabari, F., Mehmood, A., and Chung, G. (2021b). Antioxidant potential and α-glucosidase inhibitory activity of onion (Allium cepa L.) peel and bulb extracts. Brazilian Journal of Biology, 83: 00264.

    • Search Google Scholar
    • Export Citation
  • Mathew, P.T. and Augusti, K.T. (1975). Hypoglycemic effects of onion, Allium cepa Linn. on diabetes mellitus - a preliminary report. Indian Journal of Physiology and Pharmacology, 19(4): 213217.

    • Search Google Scholar
    • Export Citation
  • Oyedemi, S.O., Oyedemi, B.O., Ijeh, I.I., Ohanyerem, P.E., Coopoosamy, R.M., and Aiyegoro, O.A. (2017). Alpha-amylase inhibition and antioxidative capacity of some antidiabetic plants used by the traditional healers in Southeastern Nigeria. The Scientific World Journal, 2017: 3592491.

    • Search Google Scholar
    • Export Citation
  • Perumal, N., Nallappan, M., Shohaimi, S., Kassi, N.K., Tee, T.T., and Cheah, Y.H. (2022). Synergistic antidiabetic activity of Taraxacum officinale (L.) Weber ex F.H. Wigg and Momordica charantia L. polyherbal combination. Biomedicine and Pharmacotherapy, 145: 112401.

    • Search Google Scholar
    • Export Citation
  • Rasouli, H., Hosseini-Ghazvini, S.M.B., Adibi, H., and Khodarahmi, R. (2017). Differential alpha-amylase/alpha-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food and Function, 8(5): 19421954.

    • Search Google Scholar
    • Export Citation
  • Sarian, M.N., Ahmed, Q.U., Mat So'ad, S.Z., Alhassan, A.M., Murugesu, S., Perumal, V., Syed Mohamad, S.N.A., Khatib, A., and Latip, J. (2017). Antioxidant and antidiabetic effects of flavonoids: a structure-activity relationship based study. BioMed Research International, 2017: 8386065.

    • Search Google Scholar
    • Export Citation
  • Shahrajabian, M.H., Sun, W., and Cheng, Q. (2020). Chinese onion, and shallot, originated in Asia, medicinal plants for healthy daily recipes. Notulae Scientia Biologicae, 12(2): 197207.

    • Search Google Scholar
    • Export Citation
  • Singleton, V.L., Orthofer, R.Y., and Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299: 152178.

    • Search Google Scholar
    • Export Citation
  • Sun, L., Song, Y., Chen, Y., Ma, Y., Fu, M., and Liu, X. (2021). The galloyl moiety enhances the inhibitory activity of catechins and the aflavins against α-glucosidase by increasing the polyphenol-enzyme binding interactions. Food & Function, 12(1): 215229.

    • Search Google Scholar
    • Export Citation
  • Sun, L., Warren, F.J., and Gidley, M.J. (2019). Natural products for glycemic control: polyphenols as inhibitors of alpha-amylase. Trends in Food Science & Technology, 91: 262273.

    • Search Google Scholar
    • Export Citation
  • Valcheva-Kuzmanova, S., Gadjeva, V., Ivanova, D., and Belcheva, A. (2007). Antioxidant activity of Aronia melanocarpa fruit juice in vitro. Acta Alimentaria, 36(4): 425428.

    • Search Google Scholar
    • Export Citation
  • Wongsa, P., Chaiwarit, J., and Zamaludien, A. (2012). In vitro screening of phenolic compounds, potential inhibition against α-amylase and α-glucosidase of culinary herbs in Thailand. Food Chemistry, 131(3): 964971.

    • Search Google Scholar
    • Export Citation
  • Wu, H. and Xu, B. (2014). Inhibitory effects of onion against α-glucosidase activity and its correlation with phenolic antioxidants. International Journal of Food Properties, 17(3): 599609.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., Wang, G., Beta, T., and Dong, J. (2015). Inhibitory properties of aqueous ethanol extracts of propolis on alpha-glucosidase. Evidence-Based Complementary and Alternative Medicine, 2015: 587383.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE.

 

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 0 0 0
May 2024 422 9 4
Jun 2024 399 6 10