Authors:
W.L. Yang Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Search for other papers by W.L. Yang in
Current site
Google Scholar
PubMed
Close
,
Y. Yu Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Search for other papers by Y. Yu in
Current site
Google Scholar
PubMed
Close
,
Y.R. Sun Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Search for other papers by Y.R. Sun in
Current site
Google Scholar
PubMed
Close
,
R.X. Ge Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Search for other papers by R.X. Ge in
Current site
Google Scholar
PubMed
Close
,
J.W. Yin Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Search for other papers by J.W. Yin in
Current site
Google Scholar
PubMed
Close
,
Y.B. Dong Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Search for other papers by Y.B. Dong in
Current site
Google Scholar
PubMed
Close
,
Y.Y. Yang Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Search for other papers by Y.Y. Yang in
Current site
Google Scholar
PubMed
Close
,
Y.H. Xu School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

Search for other papers by Y.H. Xu in
Current site
Google Scholar
PubMed
Close
,
Q. Li Department of Chemical Engineering, Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing 100084, China

Search for other papers by Q. Li in
Current site
Google Scholar
PubMed
Close
, and
W.M. Du Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Search for other papers by W.M. Du in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0560-4685
Restricted access

Abstract

Conversion of economic microcrystalline cellulose (MCC) into high value-added prebiotic glucans, is not only stimulates utilisation of renewable lignocellulosic biomass, but also provides cheap prebiotics to reduce high incidence of obesity and metabolic syndrome. Herein, glucans (C0.25–C0.50–C1.00) from MCC were prepared by pre-impregnation with dilute sulphuric acid (0.25–0.50–1.00%) and ball-milling treatment for 1 h. NMR spectroscopy and gel-permeation chromatography of the glucan products showed a significant reduction in the degree of polymerisation (DP) and molecular weights (Mw). All prepared glucans improved gut stress evaluated by in vitro digestion and fermentation (young and aging mouse faecal inocula). C1.00 with lower DP and Mw showed better water solubility, earlier peak, and exhibited increased 1-diphenyl-2-picrylhydrazyl activity, higher ratios of Lactobacillus to Escherichia coli, and a higher level of short chain fatty acids better than C0.25 and C0.50 treatment (P < 0.05). Better prebiotic effects were observed in aging mice than in young mice. The highest ratio of Lactobacillus to E. coli was a 2.13-fold increase for aging mice compared to a 1.79-fold increase for young mice, relative to the initial value after C1.00 treatment. The study provides a novel pathway and a new resource for producing glucan.

  • Ashaolu, T.J., Ashaolu, J.O., and Adeyeye, S.A.O. (2021). Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. Journal of Applied Microbiology, 130(3): 677687. https://doi.org/10.1111/jam.14843.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Chen, F., Meng, Y., Wang, S., and Long, Z. (2019). Oxidized microcrystalline cellulose improve thermoplastic starch-based composite films: thermal, mechanical and water-solubility properties. Polymer, 168: 228235. https://doi.org/10.1016/j.polymer.2019.02.026.

    • Search Google Scholar
    • Export Citation
  • Dong, J.l., Yang, M., Zhu, Y.Y., Shen, R.L., and Zhang, K.Y. (2020). Comparative study of thermal processing on the physicochemical properties and prebiotic effects of the oat β-glucan by in vitro human fecal microbiota fermentation. Food Research International, 138(Part B): 109818. https://doi.org/10.1016/j.foodres.2020.109818.

    • Search Google Scholar
    • Export Citation
  • Hallac, B.B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R.J., and Ragauskas, A.J. (2010). Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Industrial & Engineering Chemistry Research, 49(4): 14671472. https://doi.org/10.1021/ie900683q.

    • Search Google Scholar
    • Export Citation
  • Hilgert, J., Meine, N., Rinaldi, R., and Schüth, F. (2013). Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy & Environmental Science, 6(1): 9296. https://doi.org/10.1039/c2ee23057g.

    • Search Google Scholar
    • Export Citation
  • Litvak, Y., Byndloss, M.X., and Baumler, A.J. (2018). Colonocyte metabolism shapes the gut microbiota. Science, 362(6418): 1017. https://doi.org/10.1126/science.aat9076.

    • Search Google Scholar
    • Export Citation
  • Liu, C.S., Glahn, R.P., and Liu, R.H. (2004). Assessment of carotenoid bioavailability of whole foods using a caco-2 cell culture model coupled with an in vitro digestion. Journal of Agricultural and Food Chemistry, 52(13): 43304337. https://doi.org/10.1021/jf040028k.

    • Search Google Scholar
    • Export Citation
  • Luo, D., Li, Y., Xu, B., Ren, G., Li, P., Li, X., Han, S., and Liu, J. (2017). Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch. Food Chemistry, 229: 3543. https://doi.org/10.1016/j.foodchem.2017.02.058.

    • Search Google Scholar
    • Export Citation
  • Madison, A.A. and Kiecolt-Glaser, J.K. (2021). The gut microbiota and nervous system: age-defined and age-defying. Seminars in Cell & Developmental Biology, 116: 98107. https://doi.org/10.1016/j.semcdb.2020.12.009.

    • Search Google Scholar
    • Export Citation
  • Meine, N., Rinaldi, R., and Schüth, F. (2012). Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem, 5(8): 14491454. https://doi.org/10.1002/cssc.201100770.

    • Search Google Scholar
    • Export Citation
  • Morris, C. and Morris, G.A. (2012). The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: a review. Food Chemistry, 133(2): 237248. https://doi.org/10.1016/j.foodchem.2012.01.027.

    • Search Google Scholar
    • Export Citation
  • Mueller, M., Cavarkapa, A., Unger, F.M., Viernstein, H., and Praznik, W. (2017). Prebiotic potential of neutral oligo- and polysaccharides from seed mucilage of Hyptis suaveolens. Food Chemistry, 221: 508514. https://doi.org/10.1016/j.foodchem.2016.10.075.

    • Search Google Scholar
    • Export Citation
  • Noack, J., Timm, D., Hospattankar, A., and Slavin, J. (2013). Fermentation profiles of wheat dextrin, inulin and partially hydrolyzed guar gum using an in vitro digestion pretreatment and in vitro batch fermentation system model. Nutrients, 5(5): 15001510. https://doi.org/10.3390/nu5051500.

    • Search Google Scholar
    • Export Citation
  • Qiao, Y., Sun, J., Ding, Y., Le, G., and Shi, Y. (2013). Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Applied Microbiology and Biotechnology, 97(4): 16891697. https://doi.org/10.1007/s00253-012-4323-6.

    • Search Google Scholar
    • Export Citation
  • Ruthes, A.C., Martinez-Abad, A., Tan, H.T., Bulone, V., and Vilaplana, F. (2017). Sequential fractionation of feruloylated hemicelluloses and oligosaccharides from wheat bran using subcritical water and xylanolytic enzymes. Green Chemistry, 19(8): 19191931. https://doi.org/10.1039/c6gc03473j.

    • Search Google Scholar
    • Export Citation
  • Sadalage, P.S. and Pawar, K.D. (2021). Production of microcrystalline cellulose and bacterial nanocellulose through biological valorization of lignocellulosic biomass wastes. Journal of Cleaner Production, 327: 129462. https://doi.org/10.1016/j.jclepro.2021.129462.

    • Search Google Scholar
    • Export Citation
  • Wang, H.M., Wang, B., Wen, J.L., Wang, S.F., Shi, Q., and Sun, R.C. (2018). Green and efficient conversion strategy of Eucalyptus based on mechanochemical pretreatment. Energy Conversion and Management, 175: 112120. https://doi.org/10.1016/j.enconman.2018.09.002.

    • Search Google Scholar
    • Export Citation
  • Wen, J.L., Xiao, L.P., Sun, Y.C., Sun, S.N., Xu, F., Sun, R.C., and Zhang, X.L. (2011). Comparative study of alkali-soluble hemicelluloses isolated from bamboo Bambusa rigida. Carbohydrate Research, 346(1): 111120. https://doi.org/10.1016/j.carres.2010.10.006.

    • Search Google Scholar
    • Export Citation
  • Xu, T., Wu, X., Liu, J., Sun, J., Wang, X., Fan, G., Meng, X., Zhang, J., and Zhang, Y. (2022). The regulatory roles of dietary fibers on host health via gut microbiota-derived short chain fatty acids. Current Opinion in Pharmacology, 62: 3642. https://doi.org/10.1016/j.coph.2021.11.001.

    • Search Google Scholar
    • Export Citation
  • Xu, Y.H., Li, T., Yang, W.L., Sun, M.Y., An, R.Z., and Du, W.M. (2021). The ratio of xylooligosaccharide to ferulic acid affects faecal ferulic acid content, short chain fatty acid output, and gut stress. Acta Alimentaria, 50(4): 494504. https://doi.org/10.1556/066.2021.00058.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y.M., Pan, L.C., Zhang, L.J., Yin, Y., Zhu, Z.Y., Sun, H.Q., and Liu, C.Y. (2020). Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii. International Journal of Biological Macromolecules, 165: 19001910. https://doi.org/10.1016/j.ijbiomac.2020.10.127.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE.

 

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 0 0 0
May 2024 0 0 0
Jun 2024 320 8 11
Jul 2024 92 0 0
Aug 2024 0 0 0