Authors:
Y. Feng College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

Search for other papers by Y. Feng in
Current site
Google Scholar
PubMed
Close
,
W. Guo College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

Search for other papers by W. Guo in
Current site
Google Scholar
PubMed
Close
,
X. Li College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

Search for other papers by X. Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6007-6902
, and
Y. Ma Yantai Institute of China Agricultural University, Yantai, 264670, China

Search for other papers by Y. Ma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Penaeus vannamei is an important farm-raised shrimp species in China. However, the shrimp deteriorates quickly and has a short shelf life. The surface colour will change with the increase of spoilage, which can reflect its freshness. Therefore, a method for predicting Total Volatile Basic Nitrogen (TVB-N) content using a combination of a chromatic value and Near-Infrared (NIR) spectra is provided. This study explores which chromatic parameter is most efficient for freshness prediction from a data analysis perspective. The Levenberg–Marquardt Optimized Artificial Neural Network (LM-Optimised ANN), the Quadratic Support Vector Machine (Quadratic SVM), and Partial Least Squares Regression (PLSR) algorithms verified the idea. The combination of spectra and chromatic value b* can achieve a more accurate prediction of TVB-N content with RMSEP of 1.660 in Quadratic SVM, 1.337 in PLSR, and Rpred2 of 0.964 in LM-Optimised ANN, better than for other methods. As the polyphenol oxidase blackens the colour of the shrimp, the fusion of NIR spectra and b* can improve the prediction of TVB-N content with fewer parameters. Finally, we constructed an easy and fast TVB-N content prediction system.

  • Antonacopoulos, N. and Vyncke, W. (1989). Determination of volatile basic nitrogen in fish – a 3rd collaborative study by the West-European-Fish-Technologists Association (WEFTA). Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 189: 309316, https://doi.org/10.1007/BF01683206.

    • Search Google Scholar
    • Export Citation
  • Cao, L., Ma, Q., Liang, T., Sun, G., Chi, W., Zhang, C., Li, J., and Wang, L. (2019). A semen cassia gum-based film with visual–olfactory function for indicating the freshness change of animal protein-rich food. International Journal of Biological Macromolecules, 133: 243252, https://doi.org/10.1016/j.ijbiomac.2019.04.045.

    • Search Google Scholar
    • Export Citation
  • Cheng, J., Sun, D., Qu, J., Pu, H., Zhang, X., Song, Z., Chen, X., and Zhang, H. (2016). Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. Journal of Food Engineering, 182: 917, https://doi.org/10.1016/j.jfoodeng.2016.02.004.

    • Search Google Scholar
    • Export Citation
  • Dudnyk, I., Janeček, E., Vaucher, J., and Stellacci, F. (2018). Edible sensors for meat and seafood freshness. Sensors and Actuators B: Chemical, 259: 11081112, https://doi.org/10.1016/j.snb.2017.12.057.

    • Search Google Scholar
    • Export Citation
  • Dug, H. and Changha, H. (2005). Interval regression analysis using quadratic loss support vector machine. IEEE Transactions on Fuzzy Systems, 13: 229237, https://doi.org/10.1109/TFUZZ.2004.840133.

    • Search Google Scholar
    • Export Citation
  • Franceschelli, L., Berardinelli, A., Dabbou, S., Ragni, L., and Tartagni, M. (2021). Sensing technology for fish freshness and safety: a review. Sensors, 21(4): 1373, https://doi.org/10.3390/s21041373.

    • Search Google Scholar
    • Export Citation
  • Gavin, H. (2022). The Levenberg–Marquardt algorithm for nonlinear least squares curve-fitting problems, Retrieved from https://people.duke.edu/∼hpgavin/ExperimentalSystems/lm.pdf.

    • Search Google Scholar
    • Export Citation
  • Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C., and Hu, Y. (2020). Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. International Journal of Biological Macromolecules, 155: 12961306, https://doi.org/10.1016/j.ijbiomac.2019.11.101.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Kang, W., Jiang, H., Zhou, M., and Lin, H. (2022). Freshness identification of oysters based on colorimetric sensor array combined with image processing and visible near-infrared spectroscopy. Sensors, 22(2): 683, https://doi.org/10.3390/s22020683.

    • Search Google Scholar
    • Export Citation
  • Guo, W., Li, X., and Xie, T. (2021). Method and system for nondestructive detection of freshness in Penaeus vannamei based on hyperspectral technology. Aquaculture, 538: 736512, https://doi.org/10.1016/j.aquaculture.2021.736512.

    • Search Google Scholar
    • Export Citation
  • Kim, H., Roy, S., and Rhim, J. (2022). Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp. Food Hydrocolloids, 124(Part A): 107294, https://doi.org/10.1016/j.foodhyd.2021.107294.

    • Search Google Scholar
    • Export Citation
  • Leghrib, R., Aantri, Y., Sanchez, J.B., Berger, F., and Kaaya, A. (2020). Assessing the freshness of Agadir blue fish using a metal oxide gas sensing array. Materials Today: Proceedings, 22(Part 1): 15, https://doi.org/10.1016/j.matpr.2019.08.054.

    • Search Google Scholar
    • Export Citation
  • Metz, M., Abdelghafour, F., Roger, J., and Lesnoff, M. (2021). A novel robust PLS regression method inspired from boosting principles: RoBoost-PLSR. Analytica Chimica Acta, 1179: 338823, https://doi.org/10.1016/j.aca.2021.338823.

    • Search Google Scholar
    • Export Citation
  • Semeano, A., Maffei, D., Palma, S., Li, R., Franco, B., Roque, A., and Gruber, J. (2018). Tilapia fish microbial spoilage monitored by a single optical gas sensor. Food Control, 89: 7276, https://doi.org/10.1016/j.foodcont.2018.01.025.

    • Search Google Scholar
    • Export Citation
  • Soncin, S., Chiesa, L., Panseri, S., Biondi, P., and Cantoni, C. (2009). Determination of volatile compounds of precooked prawn (Penaeus vannamei) and cultured gilthead sea bream (Sparus aurata) stored in ice as possible spoilage markers using solid phase microextraction and gas chromatography/mass spectrometry: volatiles of ice-stored prawn and sea bream as spoilage markers. Journal of the Science of Food and Agriculture, 89: 436442, https://doi.org/10.1002/jsfa.3466.

    • Search Google Scholar
    • Export Citation
  • Sringarm, C., Numthuam, S., Salabsee, S., Ditudompo, S., Kunanopparat, T., and Rungchang, S. (2022). Prediction of freshness quality and phosphate residue of white shrimp products using near-infrared spectroscopy. Journal of Food Quality and Hazards Control, 9: 8897, https://doi.org/10.18502/jfqhc.9.2.10645.

    • Search Google Scholar
    • Export Citation
  • Sun, X., Guo, X., Ji, M., Wu, J., Zhu, W., Wang, J., Cheng, C., Chen, L., and Zhang, Q. (2019). Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chemistry, 272: 643652, https://doi.org/10.1016/j.foodchem.2018.08.040.

    • Search Google Scholar
    • Export Citation
  • Wang, W. (2017). Freshness evaluation of shrimp with smell, color and texture. Food Research and Development, 2017(22): 176182, https://doi.org/10.3969/j.issn.1005-6521.2017.22.036.

    • Search Google Scholar
    • Export Citation
  • Wangmo, L., Suratsawadee, A., Ratvijitvech, T., and Siripinyanond, A. (2022). A novel sensor based on bead-counting of purple sweet potato tapioca pearl for freshness monitoring of shrimp. Food Chemistry, 368: 130863, https://doi.org/10.1016/j.foodchem.2021.130863.

    • Search Google Scholar
    • Export Citation
  • Witjaksono, G., Hussin, N., Rabih, A., and Alfa, S. (2017). Real time chromametry measurement for food quality detection using mobile device. IOP Conference Series: Materials Science and Engineering, 237: 012024, https://doi.org/10.1088/1757-899X/237/1/012024.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Pu, H., and Sun, D. (2019). Novel techniques for evaluating freshness quality attributes of fish: a review of recent developments. Trends in Food Science and Technology, 83: 259273, https://doi.org/10.1016/j.tifs.2018.12.002.

    • Search Google Scholar
    • Export Citation
  • Wu, C., Yuan, C., Ye, X., Hu, Y., Chen, S., and Liu, D. (2014). A critical review on superchilling preservation technology in aquatic product. Journal of Integrative Agriculture, 13(12): 27882806, https://doi.org/10.1016/S2095-3119(14)60841-8.

    • Search Google Scholar
    • Export Citation
  • Yu, X., Wang, J., Wen, S., Yang, J., and Zhang, F. (2019). A deep learning based feature extraction method on hyperspectral images for nondestructive prediction of TVB-N content in Pacific white shrimp (Litopenaeus vannamei). Biosystems Engineering, 178: 244255, https://doi.org/10.1016/j.biosystemseng.2018.11.018.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 450 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 1514 5 3
Nov 2024 564 0 0
Dec 2024 72 3 3
Jan 2025 116 5 6
Feb 2025 112 0 0
Mar 2025 107 0 0
Apr 2025 0 0 0