Gluten-free bread (GFB) consisting of amaranth flour, tigernut (chufa tuber) flour, apple powder, carrot powder, and soy protein isolate can have osteoprotective effects. Glucocorticoid-induced osteoporosis (GIO) was chosen as a model of experimental osteoporosis. Experimental studies were carried out on white male Wistar rats (n = 150): Group 1 – healthy animals receiving standard diet (StD); Group 2 – GIO rats receiving StD; Group 3 – GIO animals receiving zoledronic acid (ZA) and StD; Group 4 – GIO rats receiving ZA and GFB; Group 5 – GIO animals receiving GFB. We evaluated the general condition of animals and carried out morphological and biochemical studies. Destructive changes in the spatial structure of the bone tissue in GIO, observed in Group 2, led to the inability of the bone to withstand the functional load. At the same time, isolated treatment with ZA had virtually no effect on the final morphological picture. Including GFB in the diet of experimental animals both alone and with ZA had a noticeable protective effect on conditions triggering GIO.
Adejuyigbe, B., Kallini, J., Chiou, D., and Kallini, J.R. (2023). Osteoporosis: molecular pathology, diagnostics, and therapeutics. International Journal of Molecular Sciences, 24(19): 14583, https://doi.org/10.3390/ijms241914583.
Alekhina, N.N., Ponomareva, E.I., Zharkova, I.M., and Grebenshchikov, A.V. (2018). Assessment of the bioavailability of minerals and antioxidant activity of the grain bread in the in vivo experiment. Russian Open Medical Journal, 7(4): e0409, https://doi.org/10.15275/rusomj.2018.0409.
Altman, A., Hochberg, Z., and Silbermann, M. (1992). Interactions between growth hormone and dexamethasone in skeletal growth and bone structure of the young mouse. Calcified Tissue International, 51(4): 298–304, https://doi.org/10.1007/BF00334491.
Anam, A.K. and Insogna, K. (2021). Update on osteoporosis screening and management. The Medical Clinics of North America, 105(6): 1117–1134, https://doi.org/10.1016/j.mcna.2021.05.016.
Anastasilaki, E., Paccou, J., Gkastaris, K., and Anastasilakis, A.D. (2023). Glucocorticoid-induced osteoporosis: an overview with focus on its prevention and management. Hormones (Athens, Greece), 22(4): 611–622, https://doi.org/10.1007/s42000-023-00491-1.
Angeli, A., Guglielmi, G., Dovio, A., Capelli, G., de Feo, D., Giannini, S., Giorgino, R., Moro, L., and Giustina, A. (2006). High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone, 39(2): 253–259, https://doi.org/10.1016/j.bone.2006.02.005.
Avtandilov, V.V. (1990). Medical morphometry. Medicine Publishers, Moscow, 1990. (in Russian).
Baranova, I.A. and Baranova, I.A. (2008). Glucocorticosteroid-induced osteoporosis: pathogenesis, prevention, treatment. Modern Rheumatology Journal, 2(1): 31–39, (in Russian) https://doi.org/10.14412/1996-7012-2008-455.
Batur, P. (2024). Osteoporosis update: screening and treatment recommendations. Journal of Women's Health, 33(3): 269–272, (2002), https://doi.org/10.1089/jwh.2023.0816.
Bavykina, I.A., Zvyagin, A.A., Gusev, K.Yu., Zharkova, I.M., and Miroshnichenko, L.A. (2016). The state of bone mineral density in children with gluten intolerance when using amaranth products. Issues of Practical Pediatrics, 11(1): 32–38, (in Russian).
Canalis, E., Mazziotti, G., Giustina, A., and Bilezikian, J.P. (2007). Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporosis International, 18(10): 1319–1328, https://doi.org/10.1007/s00198-007-0394-0.
Catarzi, S., Romagnoli, C., Marcucci, G., Favilli, F., Iantomasi, T., and Vincenzini, M.T. (2011). Redox regulation of ERK1/2 activation induced by sphingosine 1-phosphate in fibroblasts: involvement of NADPH oxidase and platelet-derived growth factor receptor. Biochimica et Biophysica Acta, 1810(4): 446–456, https://doi.org/10.1016/j.bbagen.2011.01.005.
Cosman, F., Langdahl, B., and Leder, B.Z. (2024). Treatment sequence for osteoporosis. Endocrine Practice: Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 30(5): 490–496, https://doi.org/10.1016/j.eprac.2024.01.014.
Cui, Z., Meng, X., Feng, H., Zhuang, S., Liu, Z., Zhu, T., Ye, K., Xing, Y., Sun, C., Zhou, F., and Tian, Y. (2019). Estimation and projection about the standardized prevalence of osteoporosis in mainland China. Archives of Osteoporosis, 15(1): 2, https://doi.org/10.1007/s11657-019-0670-6.
Das, U.N. (2024). Is there a role for essential fatty acids in osteoporosis? European Journal of Clinical Nutrition, 78(8): 659–662, https://doi.org/10.1038/s41430-024-01456-2.
Dunford, J.E., Rogers, M.J., Ebetino, F.H., Phipps, R.J., and Coxon, F.P. (2006). Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases. Journal of Bone and Mineral Research, 21(5): 684–694, https://doi.org/10.1359/jbmr.060118.
Fadeev, S.B. and Volkov, D.V. (2002). Evaluating the severity of the experimental animal condition in a surgical experiment. In: Proceedings of the Scientific Conference Dedicated to the 25-Year Anniversary of City Clinical Emergency Hospital No. 1. Orenburg, p. 52, (in Russian).
Formosa, M.M., Christou, M.A., and Mäkitie, O. (2024). Bone fragility and osteoporosis in children and young adults. Journal of Endocrinological Investigation, 47(2): 285–298, https://doi.org/10.1007/s40618-023-02179-0.
Gehrke, B., Alves Coelho, M.C., Brasil d'Alva, C., and Madeira, M. (2023). Long-term consequences of osteoporosis therapy with bisphosphonates. Archives of Endocrinology and Metabolism, 68: e220334, https://doi.org/10.20945/2359-4292-2022-0334.
Gustinovich, V.G. (2020). Improvement of technology and development of a new assortment of functional flour-based confectionery products using fine vegetable powders, PhD Abstract. Voronezh, Russia, (in Russian).
Humphrey, M.B., Russell, L., Danila, M.I., Fink, H.A., Guyatt, G., Cannon, M., Caplan, L., Gore, S., Grossman, J., Hansen, K.E., Lane, N.E., Ma, N.S., Magrey, M., McAlindon, T., Robinson, A.B., Saha, S., Womack, C., Abdulhadi, B., Charles, J.F., Cheah, J.T.L., Chou, S., Goyal, I., Haseltine, K., Jackson, L., Mirza, R., Moledina, I., Punni, E., Rinden, T., Turgunbaev, M., Wysham, K., Amy, S., Turner, A.S., and Uhl, S. (2023). 2022 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis & Rheumatology (Hoboken, N.J.), 75(12): 2088–2102, https://doi.org/10.1002/art.42646.
Kędzia, G., Woźniak, M., Samborski, W., and Grygiel-Górniak, B. (2023). Impact of dietary protein on osteoporosis development. Nutrients, 15(21): 4581, https://doi.org/10.3390/nu15214581.
Lesnyak, O.M. (2011). Audit of the state of the osteoporosis in the Russian Federation. Preventive Medicine, 14(2): 7–10, (in Russian).
Merlijn, T., Swart, K.M.A., van der Horst, H.E., Netelenbos, J.C., and Elders, P.J.M. (2020). Fracture prevention by screening for high fracture risk: a systematic review and meta-analysis. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 31(2): 251–257, https://doi.org/10.1007/s00198-019-05226-w.
Morin, S.N., Feldman, S., Funnell, L., Giangregorio, L., Kim, S., McDonald-Blumer, H., Santesso, N., Ridout, R., Ward, W., Ashe, M.C., Bardai, Z., Bartley, J., Binkley, N., Burrell, S., Butt, D., Cadarette, S.M., Cheung, A.M., Chilibeck, P., Dunn, S., Falk, J., Frame, H., Gittings, W., Hayes, K., Holmes, C., Ioannidis, G., Jaglal, S.B., Josse, R., Khan, A.A., McIntyre, V., Nash, L., Negm, A., Papaioannou, A., Ponzano, M., Rodrigues, I.B., Thabane, L., Thomas, C.A., Tile, L., Wark, J.D., and for the Osteoporosis Canada 2023 Guideline Update Group (2023). Clinical practice guideline for management of osteoporosis and fracture prevention in Canada: 2023 update. CMAJ: Canadian Medical Association Journal, 195(39): E1333–E1348, https://doi.org/10.1503/cmaj.221647.
Muniyasamy, R. and Manjubala, I. (2024). Insights into the mechanism of osteoporosis and the available treatment options. Current Pharmaceutical Biotechnology, 25(12): 1538–1551, https://doi.org/10.2174/0113892010273783231027073117.
Papadopoulou, S.K., Papadimitriou, K., Voulgaridou, G., Georgaki, E., Tsotidou, E., Zantidou, O., and Papandreou, D. (2021). Exercise and nutrition impact on osteoporosis and sarcopenia – the incidence of osteosarcopenia: a narrative review. Nutrients, 13(12): 4499, https://doi.org/10.3390/nu13124499.
Ramchand, S.K. and Leder, B.Z. (2024). Sequential Therapy for the long-term treatment of postmenopausal osteoporosis. The Journal of Clinical Endocrinology and Metabolism, 109(2): 303–311, https://doi.org/10.1210/clinem/dgad496.
Ray, P.D., Huang, B.W., and Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5): 981–990, https://doi.org/10.1016/j.cellsig.2012.01.008.
Shepelkevich, A.P., Pekun, Yu.V, and Vasilyeva, NA (2023). Glucocorticoid-induced osteoporosis: current features of diagnosis and treatment, (in Russian), https://pharmacare.by/publications/endocrinology/glyukokortikoid-inducirovannyj-osteoporoz-osobennosti-diagnostiki-i-lecheniya-na-sovremennom-etape.html (Accessed 17 Apr 2023).
Shin, S., Sung, J., and Joung, H. (2015). A fruit, milk and whole grain dietary pattern is positively associated with bone mineral density in Korean healthy adults. European Journal of Clinical Nutrition, 69(4): 442–448, https://doi.org/10.1038/ejcn.2014.231.
Tanaka, Y., Soen, S., Hirata, S., Okada, Y., Fujiwara, S., Tanaka, I., Kitajima, Y., Kubota, T., Ebina, K., Takashi, Y., Inoue, R., Yamauchi, M., Okubo, N., Ueno, M., Ohata, Y., Ito, N., Ozono, K., Nakayama, H., Terauchi, M., Tanaka, S., and Fukumoto, S. (2024). The 2023 Guidelines for the management and treatment of glucocorticoid-induced osteoporosis. Journal of Bone and Mineral Metabolism, 42(2): 143–154, https://doi.org/10.1007/s00774-024-01502-w.
Thompson, K., Rogers, M.J., Coxon, F.P., and Crockett, J.C. (2006). Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Molecular Pharmacology, 69(5): 1624–1632, https://doi.org/10.1124/mol.105.020776.
van Staa, T.P., Leufkens, H.G., Abenhaim, L., Begaud, B., Zhang, B., and Cooper, C. (2000). Use of oral corticosteroids in the United Kingdom. QJM, 93(2): 105–111, https://doi.org/10.1093/qjmed/93.2.105.
Vorotnikova, S.Yu. and Pigarova, E.A. (2016). Zoledronic acid in the treatment of osteoporosis and other skeletal disorders. Osteoporosis and Bone Diseases, 19(3): 23–27, (in Russian), https://doi.org/10.14341/osteo2016323-27.
Wang, Y., Liu, J., Pang, Q., and Tao, D. (2017). Alpinumisoflavone protects against glucocorticoid-induced osteoporosis through suppressing the apoptosis of osteoblastic and osteocytic cells. Biomedicine and Pharmacotherapy, 96: 993–999, https://doi.org/10.1016/j.biopha.2017.11.136.
Wang, J., Xing, F., Sheng, N., and Xiang, Z. (2023). Associations of dietary oxidative balance score with femur osteoporosis in postmenopausal women: data from the National Health and Nutrition Examination Survey. Osteoporosis International, 34(12): 2087–2100, https://doi.org/10.1007/s00198-023-06896-3.
Ward, L.M. (2024). A practical guide to the diagnosis and management of osteoporosis in childhood and adolescence. Frontiers in Endocrinology, 14: 1266986, https://doi.org/10.3389/fendo.2023.1266986.
Xie, J., Li, S., Xiao, L., Ouyang, G., Zheng, L., Gu, Y., Gao, C., and Han, X. (2019). Zoledronic acid ameliorates the effects of secondary osteoporosis in rheumatoid arthritis patients. Journal of Orthopaedic Surgery and Research, 14(1): 421, https://doi.org/10.1186/s13018-019-1492-3.
Zharkova, I.M., Gustinovich, V.G., Samokhvalov, A.A., Koleva, T.N., Tikhonova, M.Yu., and Slepokurova, Yu.I. (2020). Patent for Invention RU 2718517 C1. Method for the production of gluten-free bread. Application No. 2019122617 of 18 July 2019. Published 08 April 2020. Bulletin 10. (in Russian).
Zvyagin, A.A., Bavykina, I.A., Zharkova, I.M., and Miroshnichenko, L.A. (2015). The potential of amaranth flour as a gluten-free product. Dietary Issues in Children, 13(2): 46–51, (in Russian).