Author:
C. Baltacıoğlu Food Engineering Department, Engineering Faculty, Nigde Ömer Halisdemir University, Nigde, Türkiye

Search for other papers by C. Baltacıoğlu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8308-5991
Restricted access

Abstract

In this study, changes in the odour of apple slices throughout the drying process were monitored and documented using electronic nose sensors, while moisture levels were measured and recorded using an electronic hygrometer. The initial and final moisture contents of apple slices were determined as 86.81 ± 0.05% and 4.92 ± 0.01%, respectively. During drying, apple slices were monitored with six odour sensors powered by an Arduino microprocessor. As the moisture value of the apple slices decreased during the drying process, the electronic nose data also decreased. In addition, the image changes in the apple slices according to the drying level were taught to the Teachable Machine. In this study, it was observed that the machine was able to detect the drying level of apples with 85%–100% accuracy. When 900 apple samples were used in the test phase, machine learning was able to predict the drying level of apples with 100% accuracy based on the confusion matrix data. PCA analysis highlighted different patterns in the sensor data during drying; PLS analysis showed that the sensor data can accurately predict the colour (L*, a*, b*), diameter, and thickness of apple slices with high correlation coefficients (rCV and rPre > 0.9).

  • Baltacıoğlu, H., Baltacıoğlu, C., Okur, I., Tanrıvermiş, A., and Yalıç, M. (2021). Optimization of microwave-assisted extraction of phenolic compounds from tomato: characterization by FTIR and HPLC and comparison with conventional solvent extraction. Vibrational Spectroscopy, 113: 103204, https://doi.org/10.1016/J.VIBSPEC.2020.103204.

    • Search Google Scholar
    • Export Citation
  • Bora, G.C., Pathak, R., Ahmadi, M., and Mistry, P. (2018). Image processing analysis to track colour changes on apple and correlate to moisture content in drying stages. Food Quality and Safety, 2(2): 105110, https://doi.org/10.1093/fqsafe/fyy003.

    • Search Google Scholar
    • Export Citation
  • Dalvi-Isfahan, M. (2020). A comparative study on the efficiency of two modeling approaches for predicting moisture content of apple slice during drying. Journal of Food Process Engineering, 43(11): e13527, https://doi.org/10.1111/jfpe.13527.

    • Search Google Scholar
    • Export Citation
  • Dey, D., Dhalsamant, K., and Tripathy, P.P. (2023). Effect of different pre-treatments on rehydration kinetics of solar and hot-air dried Fuji apple slices. Trends in Horticulture, 6(2): 3185, https://doi.org/10.24294/th.v6i2.3185.

    • Search Google Scholar
    • Export Citation
  • Guin, R.P.F., Jo, M., Coldea, T.E., and Bartkiene, E. (2021). Apple fermented products: an overview of technology, properties and health effects. Processes, 9(2): 223, https://doi.org/10.3390/pr9020223.

    • Search Google Scholar
    • Export Citation
  • Horuz, E., Bozkurt, H., Karataş, H., and Maskan, M. (2018). Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 54(2): 425436, https://doi.org/10.1007/s00231-017-2152-y.

    • Search Google Scholar
    • Export Citation
  • Igathinathane, C., Pordesimo, L.O., and Batchelor, W.D. (2009). Major orthogonal dimensions measurement of food grains by machine vision using ImageJ. Food Research International, 42(1): 7684, https://doi.org/10.1016/j.foodres.2008.08.013.

    • Search Google Scholar
    • Export Citation
  • Ju, H.Y., Law, C.L., Fang, X.M., Xiao, H.W., Liu, Y.H., and Gao, Z.J. (2016). Drying kinetics and evolution of the sample’s core temperature and moisture distribution of yam slices (Dioscorea alata L.) during convective hot-air drying. Drying Technology, 34(11): 12971306, https://doi.org/10.1080/07373937.2015.1105814.

    • Search Google Scholar
    • Export Citation
  • Kahraman, O., Malvandi, A., Vargas, L., and Feng, H. (2021). Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrasonics Sonochemistry, 73: 105510, https://doi.org/10.1016/j.ultsonch.2021.105510.

    • Search Google Scholar
    • Export Citation
  • Khan, M.I.H., Sablani, S.S., Joardder, M.U.H., and Karim, M.A. (2022). Application of machine learning-based approach in food drying: opportunities and challenges. Drying Technology, 40(6): 10511067, https://doi.org/10.1080/07373937.2020.1853152.

    • Search Google Scholar
    • Export Citation
  • Kumar, C., Joardder, M.U.H., Farrell, T.W., and Karim, M.A. (2016). Multiphase porous media model for intermittent microwave convective drying (IMCD) of food. International Journal of Thermal Sciences, 104: 304314, https://doi.org/10.1016/j.ijthermalsci.2016.01.018.

    • Search Google Scholar
    • Export Citation
  • Minz, P.S., Sawhney, I.K., and Saini, C.S. (2020). Algorithm for processing high definition images for food colourimetry. Measurement: Journal of the International Measurement Confederation, 158: 107670, https://doi.org/10.1016/j.measurement.2020.107670.

    • Search Google Scholar
    • Export Citation
  • Moallem, P., Serajoddin, A., and Pourghassem, H. (2017). Computer vision-based apple grading for golden delicious apples based on surface features. Information Processing in Agriculture, 4(1): 3340, https://doi.org/10.1016/j.inpa.2016.10.003.

    • Search Google Scholar
    • Export Citation
  • Mugi, V.R. and Chandramohan, V.P. (2021). Shrinkage, effective diffusion coefficient, surface transfer coefficients and their factors during solar drying of food products – a review. Solar Energy, 229: 84101, https://doi.org/10.1016/j.solener.2021.07.042.

    • Search Google Scholar
    • Export Citation
  • Phophan, T., Khuthanon, R., and Chantamit-o-Pas, P. (2022). Thai recipe retrieval application using convolutional neural network. In: Luo, Y. (Ed.), Cooperative design, visualization and engineering, 19th International Conference CDVE 2022, Virtual event, September 25–28, 2022, Proceedings, pp. 135146.

    • Search Google Scholar
    • Export Citation
  • Salehi, F. (2020). Recent applications and potential of ınfrared dryer systems for drying various agricultural products: a review. International Journal of Fruit Science, 20(3): 586602, https://doi.org/10.1080/15538362.2019.1616243.

    • Search Google Scholar
    • Export Citation
  • Sharma, N., Sharma, R., and Jindal, N. (2021). Machine learning and deep learning applications - a vision. Global Transitions Proceedings, 2(1): 2428, https://doi.org/10.1016/j.gltp.2021.01.004.

    • Search Google Scholar
    • Export Citation
  • Starowicz, M. and Zieliński, H. (2019). How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Reviews International, 35(8): 707725, https://doi.org/10.1080/87559129.2019.1600538.

    • Search Google Scholar
    • Export Citation
  • Szadzińska, J., Kowalski, S.J., and Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103: 10651074, https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.001.

    • Search Google Scholar
    • Export Citation
  • Tangüler, H., Mert, H., İlman, F., Yücel, B., and Gençtürk, S. (2021). Elma atıklarından elma sirkesi üretimi üzerine bir araştırma (A research on the production of apple vinegar from apple wastes). Nigde Omer Halisdemir University Journal of Engineering Sciences, 10(1): 132139, https://doi.org/10.28948/ngumuh.673508.

    • Search Google Scholar
    • Export Citation
  • Visweswaraiah, M., Somashekar, K., and Babu, N.V. (2017). Test mode power computation and IR drop analysis of application specific integrated circuits implementing face detection algorithms. In: 2017 4th International Conference on Advanced Computing and Communiation Systems, ICACCS 2017, Coimbatore, India, pp. 14, https://doi.org/10.1109/ICACCS.2017.8014674.

    • Search Google Scholar
    • Export Citation
  • Wu, D. and Sun, D.W. (2013). Colour measurements by computer vision for food quality control – a review. Trends in Food Science and Technology, 29(1): 520, https://doi.org/10.1016/j.tifs.2012.08.004.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., Xie, L., and Xu, H. (2018). Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques. Food Chemistry, 252: 228242, https://doi.org/10.1016/j.foodchem.2018.01.076.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., Zhou, Y., Sekula, P., and Ding, L. (2021). Machine learning in construction: from shallow to deep learning. Developments in the Built Environment, 6: 100045, https://doi.org/10.1016/j.dibe.2021.100045.

    • Search Google Scholar
    • Export Citation
  • Yavuzer, E. (2018). Development of defective fish egg sorting machine with colour sensor for trout facilities. Aquaculture Research, 49(11): 36343637, https://doi.org/10.1111/are.13831.

    • Search Google Scholar
    • Export Citation
  • Yavuzer, E. (2020). Determination of rainbow trout quality parameters with Arduino microcontroller. Journal of Food Safety, 40(6), https://doi.org/10.1111/jfs.12857.

    • Search Google Scholar
    • Export Citation
  • Yavuzer, E. (2021). Determination of fish quality parameters with low cost electronic nose. Food Bioscience, 41: 100948, https://doi.org/10.1016/j.fbio.2021.100948.

    • Search Google Scholar
    • Export Citation
  • Yavuzer, E. (2023). Rapid detection of sea bass quality level with machine learning and electronic nose. International Journal of Food Science and Technology, 58(5): 23552359, https://doi.org/10.1111/ijfs.16365.

    • Search Google Scholar
    • Export Citation
  • Yavuzer, E. and Köse, M. (2022). Prediction of fish quality level with machine learning. International Journal of Food Science and Technology, 57(8): 52505255, https://doi.org/10.1111/ijfs.15853.

    • Search Google Scholar
    • Export Citation
  • Yavuzer, E., Köse, M., and Uslu, H. (2024). Determining the quality level of ready to-eat stuffed mussels with Arduino-based electronic nose. Journal of Food Measurement and Characterization, 18: 56295637, https://doi.org/10.1007/s11694-024-02593-9.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 450 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 0 0 0
Sep 2024 0 0 0
Oct 2024 0 0 0
Nov 2024 11072 15 3
Dec 2024 11048 8 5
Jan 2025 476 6 9
Feb 2025 132 0 0