Authors:
Z. Chitsaz Esfahani Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Search for other papers by Z. Chitsaz Esfahani in
Current site
Google Scholar
PubMed
Close
,
Gh. Ebrahimipour Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Search for other papers by Gh. Ebrahimipour in
Current site
Google Scholar
PubMed
Close
,
Kh. Khoshtinat Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Kh. Khoshtinat in
Current site
Google Scholar
PubMed
Close
, and
K. Khosravi-Darani Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by K. Khosravi-Darani in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0269-6385
Restricted access

Abstract

Natural preservatives are a suitable alternative to chemical preservatives in the food industry. To overcome its hydrophobic nature, insolubility in water, and degradation of free essential oils, liposomal encapsulation can be applied. In this study, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of free as well as liposomal rosemary essential oils (REO) were measured using disk diffusion and serial dilution method for Escherichia (E.) coli, Staphylococcus (S.) aureus, Salmonella (S.) enterica, Lactiplantibacillus (L.) plantarum, Aspergillus (A.) niger, and Saccharomyces (S.) cerevisiae. The antimicrobial properties of free and encapsulated essential oils were compared with sodium benzoate during thirty days of storage. Also, the release pattern of REO from liposomes was studied using dialysis membranes during the 30 days of storage. The results showed that the MIC of free and encapsulated REO is in the range of 3.5–5% and 5–6.5%, respectively. Gram+ Staphylococcus aureus was identified as the most sensitive, while Escherichia coli was the most resistant among the tested microorganisms to the essential oils. During refrigerated storage, free REO and sodium benzoate did not show any significant difference in antimicrobial properties (P > 0.05), while encapsulated REO significantly reduced the number of microorganisms in stored salad dressing (P ≤ 0.05).

  • Arabi, M.H., Chabok, H., Mirzapour, A., Ardestani, M.S., and Saffari, M. (2017). Preparation of nanoliposomes containing Rosmarinus officinalis L. essential oil: a comparative study. Bioscience Biotechnology Research Communications, 10(1): 103108.

    • Search Google Scholar
    • Export Citation
  • Balouiri, M., Sadiki, M., and Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6(2): 7179.

    • Search Google Scholar
    • Export Citation
  • Bajpai, V.K., Baek, K.-H., and Kang, S.C. (2012). Control of Salmonella in foods by using essential oils: a review. Food Research International, 45(2): 722734.

    • Search Google Scholar
    • Export Citation
  • Bennett, S.D., Sodha, S.V., Ayers, T.L., Lynch, M.F., Gould, L.H., and Tauxe, R.V. (2018). Produce-associated foodborne disease outbreaks, USA, 1998–2013. Epidemiology and Infection, 146(11): 13971406.

    • Search Google Scholar
    • Export Citation
  • Campana, R., Tiboni, M., Maggi, F., Cappellacci, L., Cianfaglione, K., Morshedloo, M.R., Frangipani, E., and Casettari, L. (2022). Comparative analysis of the antimicrobial activity of essential oils and their formulated microemulsions against foodborne pathogens and spoilage bacteria. Antibiotics (Basel), 11(4): 447.

    • Search Google Scholar
    • Export Citation
  • Chraibi, M., Farah, A., Elamin, O., Iraqui, H.M., and Fikri-Benbrahim, K. (2020). Characterization, antioxidant, antimycobacterial, and antimicrobial effects of Moroccan rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. Journal of Advanced Pharmaceutical Technology & Research, 11(1): 2529.

    • Search Google Scholar
    • Export Citation
  • Cui, H., Li, W., and Lin, L. (2017). Antibacterial activity of liposome containing curry plant essential oil against Bacillus cereus in rice. Journal of Food Safety, 37(2): e12302.

    • Search Google Scholar
    • Export Citation
  • Da Silva, D., Fernandes, M., Endo, E., Vital, A., Britta, E., Favero, M., Castro, J., Matumoto-Pintro, P., Dias Filho, B., and Nakamura, C. (2021). Control of the growth of Alicyclobacillus acidoterrestris in industrialized orange juice using rosemary essential oil and nisin. Letters in Applied Microbiology, 72(1): 4152.

    • Search Google Scholar
    • Export Citation
  • Ghasemi, S., Javadi, N.H.S., Moradi, M., Oromiehie, A., and Khosravi-Darani, K. (2012). Investigation on development of zein antimicrobial edible film and essential oil of Zataria multiflora Boiss. on Salmonella enteritidis, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus. Asian Journal of Chemistry, 24(12): 59415942.

    • Search Google Scholar
    • Export Citation
  • Jahadi, M., Keighobadi, K., Azimzadeh, B., Keivani, H., and Khosravi-Darani, K. (2021). Liposomes as herbal compound carriers: an updated review. Current Nutrition & Food Science, 17(8): 790797.

    • Search Google Scholar
    • Export Citation
  • Jahanfar, S., Ghavami, M., Khosravi-Darani, K., and Jahadi, M. (2021). Liposomal green tea extract: optimization and physicochemical characterization. Journal of Applied Biotechnology Reports, 8(1): 512.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., Wu, N., Fu, Y., Wang, W., Luo, M., Zhao, C.J., Zu, Y.G., and Liu, X.L. (2011). Chemical composition and antimicrobial activity of the essential oil of rosemary. Environmental Toxicology and Pharmacology, 32(1): 6368.

    • Search Google Scholar
    • Export Citation
  • Le Loir, Y., Baron, F., and Gautier, M. (2003). Staphylococcus aureus and food poisoning. Genetics and Molecular Research: GMR, 2(1): 6376.

    • Search Google Scholar
    • Export Citation
  • Martínez-Graciá, C., González-Bermúdez, C.A., Cabellero-Valcárcel, A.M., Santaella-Pascual, M., and Frontela-Saseta, C. (2015). Use of herbs and spices for food preservation: advantages and limitations. Current Opinion in Food Science, 6: 3843.

    • Search Google Scholar
    • Export Citation
  • Mohammadi, A., Jafari, S.M., Mahoonak, A.S., and Ghorbani, M. (2021). Liposomal/nanoliposomal encapsulation of food-relevant enzymes and their application in the food industry. Food and Bioprocess Technology, 14: 2338.

    • Search Google Scholar
    • Export Citation
  • Mozafari, M.R. and Khosravi-Darani, K. (2007). An overview of liposome-derived nanocarrier technologies. In: Mozafari, M.R. (Ed.), Nanomaterials and nanosystems for biomedical applications. Springer, pp. 113123.

    • Search Google Scholar
    • Export Citation
  • Nieto, G., Ros, G., and Castillo, J. (2018). Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): a review. Medicines, 5(3): 98.

    • Search Google Scholar
    • Export Citation
  • Pitt, J.I. and Hocking, A.D. (2009). Fungi and food spoilage. Springer, New York, pp. 520.

  • Reis, D.R., Ambrosi, A., and Di Luccio, M. (2022). Encapsulated essential oils: a perspective in food preservation. Future Foods, 5: 100126.

    • Search Google Scholar
    • Export Citation
  • Salehi, B., Upadhyay, S., Orhan, I.E., Jugran, A.K., Jayaweera, S.L.D., Dias, D.A., Sharopov, F., Taheri, Y., Martins, N., and Baghalpour, N. (2019). Therapeutic potential of α- and β-pinene: a miracle gift of nature. Biomolecules, 9: 738.

    • Search Google Scholar
    • Export Citation
  • Shahidi, F. and Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages, and spices: antioxidant activity and health effects – a review. Journal of Functional Foods, 18: 820897.

    • Search Google Scholar
    • Export Citation
  • Tornuk, F., Cankurt, H., Ozturk, I., Sagdic, O., Bayram, O., and Yetim, H. (2011). Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella Typhimurium on fresh cut carrots and apples. International Journal of Food Microbiology, 148(1): 3035.

    • Search Google Scholar
    • Export Citation
  • Vafabakhsh, Z., Khosravi-Darani, K., Khajeh, K., Jahadi, M., Komeili, R., and Mortazavian, A.M. (2013). Stability and catalytic kinetics of protease-loaded liposomes. Biochemical Engineering Journal, 72: 1117.

    • Search Google Scholar
    • Export Citation
  • Yu, J.J., Chuesiang, P., Shin, G.H., and Park, H.J. (2021). Post-processing techniques for the improvement of liposome stability. Pharmaceutics, 13(7): 1023.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 450 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 0 0 0
Nov 2024 0 0 0
Dec 2024 0 0 0
Jan 2025 0 0 0
Feb 2025 23314 23 15
Mar 2025 7886 18 10
Apr 2025 0 0 0