View More View Less
  • 1 Department of Biology, Faculty of Science, Zahko University, Duhok, Iraq
  • 2 Department of Medical and Aromatic Plants, Nurdağı Vocational School, Gaziantep University, Gaziantep, Turkey
  • 3 Department of Agricultural Biotechnology, Faculty of Agriculture, Adnan Menderes University, Aydın, Turkey
  • 4 Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
  • 5 Department of Food Processing, Bahce Vocational School, Osmaniye Korkut Ata University, Osmaniye, Turkey
  • 6 Department of Medical Biology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Abstract

In this study, antioxidant, oxidant, antimicrobial, and antiproliferative activities of Asparagus acutifolius L. and Asparagus officinalis L., known for their nutritional properties, were determined. In this context, methanol (MeOH) and dichloromethane (DCM) extracts of plants were obtained. Total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were determined using Rel Assay kits. Antimicrobial activities of plant extracts were determined against the test microorganisms using the agar dilution method. Antiproliferative activity was tested on the lung cancer cell line A549. As a result of the studies, it has been determined that the plant species have high antioxidant potential. In addition, it was observed that the antifungal potentials of plant extracts are high. Antiproliferative activity was determined to be at high level in both plant species. As a result, it has been determined that A. acutifolius and A. officinalis have medical potential and can be used as natural agents in pharmacological designs.

  • Arruebo, M., Vilaboa, N., Sáez-Gutierrez, B., Lambea, J., Tres, A., Valladares, M., and González-Fernández, Á. (2011). Assessment of the evolution of cancer treatment therapies. Cancers, 3(3): 32793330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bal, C., Akgul, H., Sevindik, M., Akata, I., and Yumrutas, O. (2017). Determination of the anti-oxidative activities of six mushrooms. Fresenius Environmental Bulletin, 26(10): 62466252.

    • Search Google Scholar
    • Export Citation
  • Bouarab Chibane, L., Degraeve, P., Ferhout. H., Bouajila, J., and Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99(4): 14571474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaalal, M., Ouchemoukh, S., Mehenni, C., Salhi, N., Soufi, O., Ydjedd, S., and Louaileche, H. (2019). Phenolic contents and in vitro antioxidant activity of four commonly consumed nuts in Algeria. Acta Alimentaria, 48: 125131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Çoban, E.P., Biyik, H., and Uzun, C. (2009). Investigation of antimicrobial activity of some natural plants which are not-cultivated and are sold at bazaars in Aydın vicinity. International Journal of Engineering Science, 3: 5962.

    • Search Google Scholar
    • Export Citation
  • Di Maro, A., Pacifico, S., Fiorentino, A., Galasso, S., Gallicchio, M., Guida, V., Severino, V., Monaco, P., and Parente, A. (2013). Raviscanina wild asparagus (Asparagus acutifolius L.): a nutritionally valuable crop with antioxidant and antiproliferative properties. Food Research International, 53(1): 180188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4): 277285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12): 11031111.

  • Kasture, S., Kasture, A., Ballero, M., and Maxia, A. (2009). Antioxidant, anti-inflammatory, and adaptogenic activity of Asparagus acutifolius extract. Oriental Pharmacy and Experimental Medicine, 9(1): 8389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khorasani, A., Sani, W., Philip, K., Taha, R.M., and Rafat, A. (2010). Antioxidant and antibacterial activities of ethanolic extracts of Asparagus officinalis cv. Mary Washington: comparison of in vivo and in vitro grown plant bioactivities. African Journal of Biotechnology, 9(49): 84608466.

    • Search Google Scholar
    • Export Citation
  • Kubota, S., Konno, I., and Kanno, A. (2012). Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theoretical and Applied Genetics, 124(2): 345354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mfengwana, P.H., Mashele, S.S., and Manduna, I.T. (2019). Cytotoxicity and cell cycle analysis of Asparagus laricinus Burch. and Senecio asperulus DC. on breast and prostate cancer cell lines. Heliyon, 5(5): e01666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohammed, F.S., Akgul, H., Sevindik, M., and Khaled, B.M.T. (2018). Phenolic content and biological activities of Rhus coriaria var. zebaria. Fresenius Environmental Bulletin, 27(8): 56945702.

    • Search Google Scholar
    • Export Citation
  • Mohammed, F.S., Karakaş, M., Akgül, H., and Sevindik, M. (2019). Medicinal properties of Allium calocephalum collected from Gara mountain (Iraq). Fresenius Environmental Bulletin, 28(10): 74197426.

    • Search Google Scholar
    • Export Citation
  • Nindo, C., Sun, T., Wang, S.W., Tang, J., and Powers, J.R. (2003). Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis L.). LWT – Food Science and Technology, 36(5): 507516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos-Buelga, C., González-Paramás, A.M., Oludemi, T., Ayuda-Durán, B., and González-Manzano, S. (2019). Plant phenolics as functional food ingredients. Advances in Food and Nutrition Research, 90: 183257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sárosi, Sz. and Bernath, J. (2008). The antioxidant properties of Prunella vulgaris L. Acta Alimentaria, 37: 293300.

  • Sautour, M., Miyamoto, T., and Lacaille-Dubois, M.A. (2007). Steroidal saponins from Asparagus acutifolius. Phytochemistry, 68(20): 25542562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevindik, M. (2020). Antioxidant and antimicrobial capacity of Lactifluus rugatus and its antiproliferative activity on A549 cells. Indian Journal of Traditional Knowledge, 19(2): 423427.

    • Search Google Scholar
    • Export Citation
  • Sevindik, M., Akgul, H., Pehlivan, M., and Selamoglu, Z. (2017). Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresenius Environmental Bulletin, 26(7): 47574763.

    • Search Google Scholar
    • Export Citation
  • Shimoyamada, M., Suzuki, M., Sonta, H., Maruyama, M., and Okubo, K. (1990). Antifungal activity of the saponin fraction obtained from Asparagus officinalis L. and its active principle. Agricultural and Biological Chemistry, 54(10): 25532557.

    • Search Google Scholar
    • Export Citation
  • Verma, P.K., Raina, R., Sultana, M., and Singh, M. (2016). Modulatory effect of Calendula officinalis on altered antioxidant status and renal parameters in diabetic rats. Pharmaceutical and Biomedical Research, 2(4): 5264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. and Ng, T.B. (2001). Isolation of a novel deoxyribonuclease with antifungal activity from Asparagus officinalis seeds. Biochemical and Biophysical Research Communications, 289(1): 120124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WHO. (2019). WHO global report on traditional and complementary medicine 2019. World Health Organization.

  • Yuan, H., Ma, Q., Ye, L., and Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5): 559, 18 pages.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q., Xie, B., Yan, J., Zhao, F., Xiao, J., Yao, L., Zhao, B., and Huang, Y. (2012). In vitro antioxidant and antitumor activities of polysaccharides extracted from Asparagus officinalis. Carbohydrate Polymers, 87(1): 392396.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 0 0 0
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 90 3 2
Apr 2021 70 4 4
May 2021 0 0 0