The aim of this work was to microencapsulate propolis phenolic compounds using polycaprolactone as wall material by double emulsion solvent evaporation (w1/o/w2). Microencapsulation experiments were carried out by investigating the effect of sample/solvent ratio (10–100 mg mL−1), poly(ε-caprolactone) (PCL) concentrations (200–1,000 mg mL−1), poly(vinyl alcohol) (PVA) concentrations (0.5–2.5 g mL−1), and stirring speed (200–1,000 r.p.m.) on the microencapsulation efficiency of total phenolic content (TPC%) and antioxidant activity of propolis. The best microencapsulation conditions were selected according to the total phenolic amount and their antioxidant activity. Experimental results showed that all microencapsulation conditions had significant effects (P < 0.05) on total phenolic content and antioxidant activities. The best conditions were: 30 mg mL−1, 600 mg mL−1, 2 g mL−1, and 400 r.p.m. for sample/solvent ratio, PCL concentrations, PVA concentrations, and stirring speed, respectively, with values of 86.98 ± 0.03% for phenolic encapsulation efficiency, 53.81 ± 0.50% for free radical scavenging activity (DPPH), and 45,480 Trolox equivalent, mg TE/100 g dry weight for ferric reducing antioxidant power (FRAP). Under all encapsulation conditions, a significant positive correlation was observed between ferric reducing antioxidant power, free radical scavenging activity, and phenolic content.
Avanço, G.B. and Bruschi, M.L. (2008). Preparation and characterization of ethyl cellulose microparticles containing propolis. Revista de Ciências Farm Básica e Aplicada, 29(2): 129–135.
Bouriche, S., Cózar-Bernal, M.J., Rezgui, F., Rabasco, A., Álvarez, M., and González-Rodríguez, M.L. (2019). Optimization of preparation method by W/O/W emulsion for entrapping metformin hydrochloride into poly (lactic acid) microparticles using Box-Behnken design. Journal of Drug Delivery Science and Technology, 51: 419–429.
Calligaris, S., Plazzotta, S., Bot, F., Grasselli, S., Malchiodi, A., and Anese, M. (2016). Nano emulsion preparation by combining high pressure homogenization and high power ultrasound at low energy densities. Food Research International, 83: 25–30.
Castillo, L.B. and Martinez, Y. (2023). The concentration and type of emulsifier rules the oil/water and water/oil/water emulsion size distribution. Chemical Engineering Communications, 210: 2064–2071.
Chaalal, M., Ydjedd, S., Harkat, A., Namoune, H., and Kati, D.E. (2018). Effect of in vitro gastrointestinal digestion on antioxidant potential of three prickly pear variety extracts. Acta Alimentaria, 47: 333–339.
Chen, Z.H., Yu, F., Zeng, X.R., and Zhang, Z.G. (2012). Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Applied Energy, 91(1): 7–12.
Cueva, C., Gil-Sánchez, I., Ayuda-Durán, B., González-Manzano, S., González-Paramás, A.M., Santos-Buelga, C., Bartolomé, B., and Moreno-Arribas, M. (2017). An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules, 22(1): 99.
Da Rosa, C.G., Borges, C.D., Zambiazi, R.C., Rutz, J.K., Luz, S., Krumreich, F.D., Benvenutti E, V., and Nunes, M.R. (2014). Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). LWT – Food Science and Technology, 58(2): 527–533.
Dias, M.I., Ferreira, I.C.F.R, and Barreiro, M.F. (2015). Microencapsulation of bioactives for food applications. Food & Function, 6(4): 1035–1052.
Farre, R., Frasquet, I., and Sanchez, A. (2004). El propolis y la salud. Ars Pharmaceutica, 45(1): 21–43.
Ferreira, I., De Sousa Melo, D., Menezes, A.G.T., Fonseca, H.C., De Assis, B.B.T., Ramos, C.L.,Magnani, M.,Dias, D.R., and Schwan, R.F. (2023). Non-lactic probiotic beverage enriched with microencapsulated red propolis: microorganism viability, physicochemical characteristics, and sensory perception. Fermentation, 9(3): 234.
Iqbal, M., Zafar, N., Fessi, H., and Elaissari, A. (2015). Double emulsion solvent evaporation techniques used for drug encapsulation. International Journal of Pharmaceutics, 496(2): 173–190.
Khaldia, S., Bennabi, L., Khane, Y., and Belarbi, L. (2020). Preparation, characterization and antioxidant activity of microspheres made of cellulose triacetate (CTA) to control the release of vitamin C. Journal of Chemical Technology and Biotechnology, 95(6): 1800-1807.
Klinkesorn, U., Sophanodora, P., Chinachoti, P., Mcclements, D.J., and Decker, E.A. (2005). Increasing the oxidative stability of liquid and dried tuna oil-in-water emulsions with electrostatic layer-by-layer deposition technology. Journal of Agriculture and Food Chemistry, 53(11): 4561−4566.
Kouadri, I., Rebiai, A., Hemmami, H., Seghir, B.B., Zeghoud, S., Berra, D., and Bouchra, R.M. (2021). Impact of geographic variation on the chemical composition and antioxidant activity of Algerian propolis. Applied Biology in Saharan Areas, 3(7): 27−41.
Li, X., Wang, L., and Wang, B. (2017). Optimization of encapsulation efficiency and average particle size of Hohenbuehelia serotina polysaccharides nanoemulsions using response surface methodology. Food Chemistry, 229: 479–486.
Marquele, F.D., Stracieri, K.M., Fonseca, M.J.V., and Freitas, L.A.P. (2006). Spray dried propolis extract: physicochemical and antioxidant properties. Pharmazie, 61(4): 325–330.
Mouhoubi-Tafinine, Z., Ouchemoukh, S., and Tamendjari, A. (2016). Antioxidant activity of some Algerian honey and propolis. Industrial Crops and Products, 88: 85–90.
Ouchemoukh, S., Louaileche, H., and Schweitzer, P. (2007). Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control, 18(1): 52–58.
Paulo, F., Paula, V., Estevinho, L.M., and Santos, L. (2021). Propolis microencapsulation by double emulsion solvent evaporation approach: comparison of different polymeric matrices and extract to polymer ratio. Food and Bioproducts Processing, 127: 408–425.
Ramos, A.F.N. and Miranda, J.D. (2007). Propolis. A review of its anti-inflammatory and healing actions. Journal of Venomous Animals and Toxins Including Tropical Diseases, 13(4): 697–710.
Sahlan, M. and Supardi, T. (2013). Encapsulation of Indonesian propolis by casein micelle. International Journal of Pharma and Bio Sciences, 4(1): 297–305.
Soltani, E.K., Zaim, K., Mokhnache, K., Haichou, N., Mezaache-Aichour, S., Charef, N., and Zerroug, M.M. (2021). Polyphenol contents, antioxidant and antibacterial activities of aqueous Algerian propolis extracts. Phytotherapie, 19(5–6): 408–415.
Speranza, A., Corradini, M.G., Hartman, T.G., Ribnicky, D., Oren, A., and Rogers, M.A. (2013). Influence of emulsifier structure on lipid bioaccessibility in oil-water nanoemulsions. Journal of Agricultural Food Chemistry, 61(26): 6505–6515.
Valente, M.J., Baltazar, A.F., Henrique, R., Estevinho, L., and Carvalho, M. (2011). Biological activities of Portuguese propolis: protection against free radical-induced erythrocyte damage and inhibition of human renal cancer cell growth in vitro. Food and Chemical Toxicology, 49(1): 86–92.
Ydjedd, S., Bouriche, S., Lopez-Nicolas, R., Sanchez-Moya, T., Frontela-Saseta, C., Ros-Berruezo, G., Rezgui, F., Louaileche, H., and Kati, D.E. (2017). Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity .Journal of Agricultural and Food Chemistry, 65(4): 827–835.