Authors:
A. Soyuçok Department of Food Processing, Burdur Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye

Search for other papers by A. Soyuçok in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2626-5827
,
A. Kart Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye

Search for other papers by A. Kart in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5227-1289
,
H. Yalçın Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye

Search for other papers by H. Yalçın in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2162-2418
,
E. Zeybek Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye

Search for other papers by E. Zeybek in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3954-8578
, and
O. Özkan Department of Medical Pharmacology, Faculty of Medicine, Niğde Ömer Halis Demir University, Niğde, Türkiye

Search for other papers by O. Özkan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9794-8863
Restricted access

Abstract

The study investigates the antimicrobial effects of the Hypericum crenulatum ethanolic (HCE) extract against 14 different food pathogens and their biofilm-forming abilities in response to HCE treatment. The phenolic acid composition of the HCE extract was also determined using an HPLC-DAD detector. The antimicrobial activity of HCE extract was assessed using the disc diffusion and microdilution methods. According to the findings, the methicillin-resistant Staphylococcus aureus ATCC 43300, Listeria monocytogenes RSKK 472, and Listeria innocua ATCC 33090 strains exhibited the lowest minimum inhibitory concentration (MIC) values at a concentration of 2 μg mL−1. Based on the disc diffusion test results, the largest zone of inhibition of HCE extract against foodborne pathogens was seen against Bacillus cereus, and the diameter of the inhibition zone increased with the concentration of HCE extract (P < 0.05). In terms of phenolic acid composition of HCE extract, the phenolic acids with the highest and lowest amounts were caffeic acid (59.92 mg g−1) and p-coumaric acid (13.61 μg g−1), respectively. Our study determined that the HCE extract demonstrated antimicrobial, bactericidal, and antibiofilm activities against some foodborne pathogens. These effects reveal its potential for improving food safety by inhibiting the growth of these pathogens.

  • Aslantürk, Ö.S. (2010 ). Aydın yöresinde kullanılan bazı tıbbi bitkilerin antioksidant ve sitotoksik etkilerinin araştırılması (Investigation of antioxidant and cytotoxic effects of some medicinal plants used in Aydın region). MSc. Thesis Aydın Adnan Menderes University, p. 100.

    • Search Google Scholar
    • Export Citation
  • Aydemir, İ., Ozkan, O., and Savran, A. (2020). The effects of Hypericum crenulatum polysaccharides on the proliferation of cancer cells. Ege Tıp Bilimleri Dergisi, 3(1): 16.

    • Search Google Scholar
    • Export Citation
  • Azwanida, N.N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants, 4(3): 100196.

    • Search Google Scholar
    • Export Citation
  • Bagheri, R., Bohlouli, S., Maleki Dizaj, S., Shahi, S., Memar, M.Y., and Salatin, S. (2022). The antimicrobial and anti-biofilm effects of Hypericum perforatum oil on common pathogens of periodontitis: an in vitro study. Clinics and Practice, 12(6): 10091019.

    • Search Google Scholar
    • Export Citation
  • Bahmani, M., Taherikalani, M., Khaksarian, M., Soroush, S., Ashrafi, B., and Heydari, R. (2019). Phytochemical profiles and antibacterial activities of hydroalcoholic extracts of Origanum vulgare and Hypericum perforatum and carvacrol and hypericin as a promising anti-Staphylococcus aureus. Mini Reviews in Medicinal Chemistry, 19(11): 923932.

    • Search Google Scholar
    • Export Citation
  • Bayramoglu, G., Bayramoglu, A., Engur, S., Senturk, H., Ozturk, N., and Colak, S. (2014). The hepatoprotective effects of Hypericum perforatum L. on hepatic ischemia/reperfusion injury in rats. Cytotechnology, 66(3): 443448.

    • Search Google Scholar
    • Export Citation
  • Bridi, H., Pustay, A.P., Bordignon, S.A.D.L., Picoli, S.U., von Poser, G.L., and Ferraz, A.D.B.F. (2022). Antimicrobial activity of dimeric acylphloroglucinols isolated from southern Brazilian Hypericum species against to resistant bacterial. Natural Product Research, 36(24): 64486452.

    • Search Google Scholar
    • Export Citation
  • Camps, J., Pujol, I., Ballester, F., Joven, J., and Simó, J.M. (2011). Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in Gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 55(4): 13251331.

    • Search Google Scholar
    • Export Citation
  • Caponio, F., Alloggio, V., and Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preparation techniques. Food Chemistry, 64(2): 203209.

    • Search Google Scholar
    • Export Citation
  • Dall'Agnol, R., Ferraz, A., Bernardi, A.P., Albring, D., Nör, C., Sarmento, L., Lamb, L., Hass, M., von Poser, G., and Schapoval, E.E.S. (2003). Antimicrobial activity of some Hypericum species. Phytomedicine, 10(6–7): 511516.

    • Search Google Scholar
    • Export Citation
  • Dhingra, S., Rahman, N.A.A., Peile, E., Rahman, M., Sartelli, M., Hassali, M.A., Islam, T., Islam, S., and Haque, M. (2020). Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter. Frontiers in Public Health, 8: 535668.

    • Search Google Scholar
    • Export Citation
  • Ghodrati, L., Ataie Kachoie, M., Mousavi-Fard, S., and Moattar, F. (2021). Study the antimicrobial effects of methanolic extract of Hypericum perforatum on foodborne bacteria. (In Persian with English abstract). Journal of Food Microbiology, 8(4): 5666.

    • Search Google Scholar
    • Export Citation
  • Ilieva, Y., Marinov, T., Trayanov, I., Kaleva, M., Zaharieva, M.M., Yocheva, L., Kokanova-Nedialkova, Z., Nadjenski, H., and Nedialkov, P. (2023). Outstanding antibacterial activity of Hypericum rochelii – comparison of the antimicrobial effects of extracts and fractions from four Hypericum species growing in Bulgaria with a focus on prenylated phloroglucinols. Life (Basel), 13(2): 274.

    • Search Google Scholar
    • Export Citation
  • Liu, X., Bai, Y., Wang, Y., Chen, Y., Dong, W., and Zhang, Z. (2023). Complete chloroplast genome of Hypericum perforatum and dynamic evolution in Hypericum (Hypericaceae). International Journal of Molecular Sciences, 24(22): 16130.

    • Search Google Scholar
    • Export Citation
  • Marcinkiewicz, J., Strus, M., and Pasich, E. (2013). Antibiotic resistance: a “dark side” of biofilm-associated chronic infections. Polskie Archiwum Medycyny Wewnętrznej = Polish Archives of Internal Medicine, 123(6): 309313.

    • Search Google Scholar
    • Export Citation
  • Mostafa, A.A., Al-Askar, A.A., Almaary, K.S., Dawoud, T.M., Sholkamy, E.N., and Bakri, M.M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2): 361366.

    • Search Google Scholar
    • Export Citation
  • Ng, Q.X., Venkatanarayanan, N., and Ho, C.Y.X. (2017). Clinical use of Hypericum perforatum (St John's wort) in depression: a meta-analysis. Journal of Affective Disorders, 210: 211221.

    • Search Google Scholar
    • Export Citation
  • Öztürk, Ş., Hazer, Y., Kaşkatepe, B., Çölgeçen, H., and Kulak, M. (2023). Kırmızı Kantaron (Hypericum capitatum) Bitkisi: Fenolik İçeriklerinin, Antioksidan Aktivitesinin Belirlenmesi ve Klinik İzolatlar Üzerinde Antimikrobiyal Etkinliğinin Araştırılması (St. John's Wort (Hypericum capitatum) plant: determination of phenolic contents, antioxidant activity and investigation of antimicrobial activity on clinical isolates). Batı Karadeniz Tıp Dergisi, 7(1): 5765.

    • Search Google Scholar
    • Export Citation
  • Pereira, R.F.A., Andre, L.S.P., Pinheiro, F.R., Scaffo, J., Corrêa, A.L., Ribeiro, T.A.N., Sachs, D., Rocha, L., and Aguiar-Alves, F. (2022). Hypericum brasiliense: bactericidal and antibiofilm activity against Staphylococcus aureus in vitro. Natural Product Research, 36(10): 26432647.

    • Search Google Scholar
    • Export Citation
  • Romulo, A., Zuhud, E.A., Rondevaldova, J., and Kokoska, L. (2018). Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine. Pharmaceutical Biology, 56(1): 287293.

    • Search Google Scholar
    • Export Citation
  • Sarkisian, S.A., Janssen, M.J., Matta, H., Henry, G.E., LaPlante, K.L., and Rowley, D.C. (2012). Inhibition of bacterial growth and biofilm production by constituents from Hypericum spp. Phytotherapy Research, 26(7): 10121016.

    • Search Google Scholar
    • Export Citation
  • Schiavone, B.I.P., Rosato, A., Marilena, M., Gibbons, S., Bombardelli, E., Verotta, L., Franchini, C., and Corbo, F. (2013). Biological evaluation of hyperforin and its hydrogenated analogue on bacterial growth and biofilm production. Journal of Natural Products, 76(9): 18191823.

    • Search Google Scholar
    • Export Citation
  • Soyuçok, A. (2022). The effects of some essential oils on methicilin resistant Staphylococcus aureus. Turkish Journal of Agriculture-Food Science and Technology, 10(1): 4953.

    • Search Google Scholar
    • Export Citation
  • Sudagidan, M. and Aydin, A. (2010). Virulence properties of methicillin-susceptible Staphylococcus aureus food isolates encoding Panton–Valentine Leukocidin gene. International Journal of Food Microbiology, 138(3): 287291.

    • Search Google Scholar
    • Export Citation
  • Sudagidan, M. and Yemenicioğlu, A. (2012). Effects of nisin and lysozyme on growth inhibition and biofilm formation capacity of Staphylococcus aureus strains isolated from raw milk and cheese samples. Journal of Food Protection, 75(9): 16271633.

    • Search Google Scholar
    • Export Citation
  • Temel, A. and Eraç, B. (2018). Bakteriyel biyofilmler: Saptama yöntemleri ve antibiyotik direncindeki rolü (Bacterial biofilms: detection methods and role in antibiotic resistance). Türk Mikrobiyoloji Cemiyeti Dergisi, 48(1): 113.

    • Search Google Scholar
    • Export Citation
  • Tuncel, N.B. and Yılmaz, N. (2010). Kaz dağları’ndan toplanan bazı bitkilerin fenolik asit kompozisyonlarının yüksek performanslı sıvı kromatografisi ile belirlenmesi (Determination of phenolic acid compositions of some plants collected from Kaz Mountains by high performance liquid chromatography). Akademik Gıda, 8(3): 1823.

    • Search Google Scholar
    • Export Citation
  • Yalcınkaya, E., Basaran, M.M., Tunckasık, M.E., Yazici, G.N., Elmas, Ç., and Kocaturk, S. (2022). Efficiency of Hypericum perforatum, povidone iodine, tincture benzoin and tretinoin on wound healing. Food and Chemical Toxicology, 166: 113209.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2023 0 0 0
Oct 2023 0 0 0
Nov 2023 0 0 0
Dec 2023 5770 6 5
Jan 2024 876 3 7
Feb 2024 508 0 0
Mar 2024 0 0 0